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FOREWORD

Ocean models embody a wide range of oceanic knowledge. There are issues
concerned with the numerical representation of processes and of conservation equa-
tions on different finite spatial grids. There is the need to respect the smallness
of diapycnal mixing and particularly to not allow horizontal diffusion to cause
false diapycnal density fluxes. Do the model variables represent the Eulerian-mean
quantities or are they the result of some other type of averaging process? Is the
Boussinesq approximation really made in a model or is this simply a matter of
interpretation? Should the diffusion tensor be symmetric, and if not, what is the
physical justification for the skew component of diffusion? Where this book really
shines is that rather than simply presenting workable recipes to each of these is-
sues (and many more), the underlying physics is expertly described, usually first
in differential equations and then in the discrete representation on the numerical
grid. Because of this clarity and attention to detail, the book will appeal to not only
ocean modellers but to a much broader spectrum of oceanographers.

As a branch of fluid dynamics, distinguishing features of the ocean are its rather
strong stratification and the smallness of its diapycnal mixing processes. For cli-
mate purposes the seemingly small diapycnal mixing processes are very important
yet their faithful representation in models has been a formidable obstacle. While
we have known the importance of diapycnal processes in controlling the thermo-
haline ocean circulation for some decades, it is only in the past decade that we
have learnt how to control the amount of diapycnal mixing in z-coordinate ocean
models, and then only at coarse resolution. This goal has been achieved by clear
thinking about the conservation of properties in ocean models, particularly the way
in which diffusion is imposed. With this book we now have the relevant averaged
model equations derived carefully from first principles and the subtleties associated
with interpreting averaged quantities should no longer need to be glossed over.

The present book can be described as providing comprehensive treatment of the
following subjects (i) deriving the oceans conservation equations from first princi-
ples, (ii) carefully considering the issues that arise when these equations are aver-
aged, (iii) describing the many numerical procedures that are used to integrate the
averaged equations forward in time, and (iv) providing the tensorial underpinning
so that the equations can be transformed consistently onto different grids on the
spherical earth. This book clearly fills a void in the oceanographic literature. The
usual development skips the first two topics and treats the averaged equations as
given (which then begs the question of what the model variables might represent),
while the subject of tensor analysis is familiar to too few oceanographers especially
given the range of grids that are now in common use in ocean models.

Two key advances in ocean modelling over the past decade are the rotation of
the (symmetric) diffusion tensor to be aligned with respect to the local neutrally
buoyant directions, and the discovery and implementation of the so-called Gent-
McWilliams mixing scheme for mesoscale eddies. These two topics are expertly
described in this book and together they occupy one third of its pages. This is
entirely appropriate since both these advances have been crucial for controlling the
false diapycnal mixing that otherwise occurs across sloping density surfaces in low-
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resolution z-coordinate models. Both advances have been hard-won by oceanogra-
phers. The solution of the first involved the subtle thermobaric nature of the equa-
tion of state of seawater, while the second relies on the action of mesoscale eddies
to release potential energy, with the mixing scheme being best viewed as either an
extra quasi-Stokes advection or alternatively as an additional amount of diffusion
which happens to be skew diffusion. These issues are subtle and are not covered
in existing oceanographic texts, and yet they have been at the root of the biggest
improvements in ocean climate modelling in more than twenty years.

This book truly lives up to its title. By delving into the physical basis for the
choices made in present ocean models, the book does indeed establish the funda-
mental basis of ocean models. Where the issues are not yet agreed by the oceano-
graphic community, the book takes on the character of a review of these research
issues. The book will prove invaluable to ocean modellers and to those concerned
with how fundamental ocean physics is represented in ocean models.

Trevor J. McDougall
CSIRO Marine Research, Hobart, Australia
Dec 18, 2002
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PREFACE

The purpose of this book is to contribute to a rationalization of the physical,
mathematical, and numerical foundations of computer models used to understand
and predict the global ocean circulation. For this purpose, the presentation is geared
towards those aiming to understand the physical meaning of the equations of ocean
models and the methods used to solve these equations. Much of the formulation
is general, and so applicable to any primitive equation ocean model. However, for
the purpose of presenting concrete examples, attention is focused on z-coordinate
models, which represent the most common model class used to simulate the global
ocean climate system. Beyond a solid understanding of classical mechanics and
vector calculus, requirements of previous knowledge are minimized by approach-
ing the formulations from basic principles. Nonetheless, experience with ocean
modeling and the ideas of geophysical fluid dynamics (GFD) will aid the reader.

Various topics in ocean model development are complex, technical, and a bit
esoteric. This book aims to reduce the mystery by keeping presentations reason-
ably self-contained, thorough, and starting from a fundamental perspective. Addi-
tionally, some level of mathematical sophistication, fully explained in the text, has
proven useful to cleanly present physical and mathematical results in their neces-
sary generality. It is hoped that this book provides the reader with a digestable
presentation of certain key aspects of ocean climate models. In turn, the reader is
encouraged to suggest improvements of any sort, or to provide corrections to the
mistakes likely contained here.

Limitations allow for only a partial fulfillment of this book’s goals. For example,
notable topics are missing or only partially considered, and discussion is slanted to-
wards z-coordinate models. Additionally, this book is not a text on oceanography,
geophysical fluid dynamics, or numerical methods. Hence, there are no solutions
described, either analytical or numerical, little mention is made of ocean observa-
tions, and some knowledge of basic numerical methods is required. For more com-
plete treatments of these subjects, the reader is referred to Pickard and Emery (1990)
and Tomczak and Godfrey (1994) for observational descriptions of the ocean, Gill
(1982), Apel (1987), Pedlosky (1987), Cushman-Roisin (1994), Pedlosky (1996), and
Salmon (1998) for foundations in geophysical fluid dynamics and theoretical physi-
cal oceanography, Trenberth (1992), Peixoto and Oort (1992), Chassignet and Verron
(1998), Haidvogel and Beckmann (1999), Kantha and Clayson (2000a), and Kantha
and Clayson (2000b) for discussions of ocean climate physics and modeling, and
Haltiner and Williams (1980), O’Brien (1986), Bryan (1989), and Durran (1999) for
numerical methods of use for geophysical fluid dynamics. Additionally, the recent
book edited by Siedler et al. (2001) is noteworthy for its many lucid contributions
affording the reader a glimpse at the state-of-the-art in global ocean observations,
theory, and modeling.

The present book aims to fill a niche in the literature whereby a (mostly) first
principles presentation of ocean climate models is given, with discussions extend-
ing from fundamental ocean fluid mechanics to detailed parameterization and dis-
cretization issues. That is, this book presents an exposition of certain features of
ocean models, and we distinguished such from a book on ocean modeling, where
focus is given towards simulations and their relation to the real ocean. Restricted



6

as this scope may appear, there are numerous topics missing that reflect on the au-
thor’s limitations rather than an absence of their importance. It is hoped that this
book nonetheless serves as a useful complement to other presentations, and that
it provides a stepping stone for future expositions addressing shortcomings of the
present document.

ORGANIZATION

This book is organized into parts, each of which have multiple chapters. It is
assumed that the book will not be read cover-to-cover. Consequently, the contents
of one part are written so that they can largely be read independently of other parts.
Chapters likewise aim for such independence, though less so. Although useful to
the reader aiming to pick up the book at any point in its development, this modu-
lar approach has not been taken to its extreme, nor has it been used to justify poor
cross-referencing. Instead, this organization comes at the price of needing to sum-
marize key results from allied parts/chapters, with cross-referencing maintained. It
is hoped that this approach enhances the book’s readability, accessibility, and utility
as both a text and a reference.

Chapter 1 starts the book with an introduction to ocean climate models. It is
here that we provide some understanding for why ocean models are of primary
importance for climate science. This chapter also helps to motivate the more fun-
damental, and by necessity more mathematical, development presented in subse-
quent chapters.

Part I begins the main part of the text by focusing on the equations describing
stratified fluid dynamics on a rotating sphere. Chapter 2 introduces some physi-
cal ideas underlying a continuum description of the ocean fluid. It also highlights
common approximations made in ocean climate models. Chapter 3 derives the hy-
drodynamical equations of the ocean fluid. Chapter 4 presents aspects of ocean
energetics and thermo-hydrodynamics. Chapter 5 presents some mathematical re-
sults applicable to a generalized vertical coordinate description of the ocean.

The equations described in Part I allow for a mathematical description of a par-
ticular realization of the ocean fluid given essentially an infinite level of knowledge
about its state. In practice, we are always faced with less than infinite information
in both space and time. Hence, it is necessary to derive alternative equations via a
coarse-graining procedure. That is, we need to determine approximate, averaged,
or mean-field equations for the coarsened ocean fluid.

Part II presents two chapters illustrating two averaged descriptions. Chapter 6
accepts the fact that the precise state of the turbulent ocean is not physically mea-
surable with finite instruments, thus necessitating a statistical approach. In par-
ticular, this chapter provides a conceptual and mathematical interpretation of the
fields discretized by a z-coordinate model. It is argued that these equations rep-
resent an ensemble mean of individual realizations of the ocean fluid, where the
sub-grid-scales are associated with the small-scale dianeutral mixing arising from
three-dimensional turbulence. In Chapter 7, we focus on the transport of tracers by
mesoscale eddies. This transport is the dominant means whereby tracers are stirred
within the ocean interior, with tracer gradients ultimately dissipated by small scale
mixing processes. The discussion in this chapter motivates a particular interpre-
tation of model variables for those cases where the simulations do not explicitly
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resolve mesoscale eddies. Furthermore, in this context we see how the choice of
vertical coordinate strongly affects the simplicity of the mathematical description of
adiabatic transport. This part of the book finishes with Chapter 8, which presents
a general discussion of subgrid-scale processes, with a focus on those contribut-
ing to dianeutral transport. Such transport is spread non-uniformly throughout the
World Ocean, with most occurring in critical regions mostly near ocean boundaries.
Dianeutral transport plays a critical role in affecting the ocean’s stratification and
vertical distribution of tracers, and this chapter provides an introduction to some
of the issues.

Part III presents two chapters on the semi-discrete equations of a z-coordinate
ocean model. Semi-discrete refers to equations that have some parts discretized,
some parts continuous. The aim here is to describe in general terms the equations
of a discrete z-coordinate ocean model, and to outline methods used to time step
these equations. In particular, Chapter 9 discusses the semi-discrete version of the
mass and tracer budgets, and highlights the importance of maintaining compat-
ibility between these budgets. Chapter 10 provides a semi-discrete version of the
momentum equations and methods used to march these equations forward in time.

Chapter 7 introduces a framework for thinking about transport in the ocean in-
terior. The parameterization of this transport in ocean models constitutes the neu-
tral physics part of the models. Notably, the integrity of z-model simulations has
greatly improved since modelers started employing such schemes. Part IV of this
book aims to rationalize the neutral physics schemes commonly used in z-models.
We discuss some physical and mathematical aspects of neutral physics in Chapters
11 and 12. Chapter 13 focuses on issues that must be addressed to implement neu-
tral physics operators in climate models, where in particular what is done next to
boundaries proves crucial for both numerical stability and physical integrity. Chap-
ter 14 provides a rational, with details, for discretizing neutral physics in z-models.

Horizontal friction plays an important role in determining the integrity of ocean
model simulations. Additionally, the state-of-the-art in ocean climate model hori-
zontal friction remains at an engineering stage, with modelers encouraged to use
horizontal friction largely for purposes of maintaining numerical stability. The
more scientifically satisfying situation is to consider horizontal friction as a param-
eterization of unresolved physical processes, such as the case for the kinetic theory
of gases. However, there is no complete theory for how to close the momentum
equation at scales relevant to ocean climate studies. Hence, horizontal friction used
in ocean climate models is ad hoc. This situation would be of little concern were it
not for the importance of friction for the simulations, such as in boundary and/or
equatorial regions (i.e., regions where geostrophy breaks down). Hence, it is cru-
cial that modelers understand the rationale underlying some of the commonly used
schemes, if only to motivate approaches that lead to improvements.

Given the importance to simulations of horizontal friction, Part V is offered as a
tutorial for these issues. Chapter 15 focuses on the friction force in the continuum,
with some of the mathematics developed in Part VI of some utility. Chapter 16 then
presents some considerations for how to choose a viscosity to set the friction force’s
magnitude. The issues discussed in these chapters are generic, whereas Chapter 17
finishes this part of the book with a discretization of the horizontal friction operator
appropriate for B-grid models.

Tensor analysis is not commonly taught in oceanographic or atmospheric sci-
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ence curricula. However, it is standard in physics and engineering studies. An un-
derstanding of general tensor analysis is necessary when formulating the equations
of rotating fluid dynamics on a sphere. Hence, although of a relatively specialized
nature, tensor analysis is needed by those actually building ocean climate models.
Its logical place is at the start of this book. However, it is placed in Part VI to allow
the less specialized reader ample opportunity to skip this material.

Two chapters are included that aim to develop tensor analysis from first princi-
ples, with examples drawn from ocean fluid dynamics. Chapter 18 introduces the
basic notions, whereas Chapter 19 expands on these notions while deriving some
key results from calculus on curved manifolds. The presentation is aimed at the
reader who has a solid foundation in undergraduate vector calculus. No exposure
to Cartesian or general tensors is assumed. The pace may be a bit slow for those
who have some exposure to tensor analysis, yet it is hoped that both experienced
and inexperienced readers will find something of use here. For those not having
experience with these matters, some attempt has been made to allow the reader to
only briefly read or to skip this material. We do so by summarizing salient points
as needed in the appropriate places throughout the main text, with Section 19.12
offered as a summary of certain salient points.

CONCERNING OCEAN CLIMATE MODEL DEVELOPMENT

Ocean climate models are not conceived one year, to be then publicly released
and supported the next. Instead, they take years, indeed decades, of creative pas-
sion and obsession from many scientists and engineers. It is only via patience and
persistence that an ocean model is successfully taken from its vision phase, to its
prototype phase, onto its public release phase, and then to its revision phase where
one begins to fully appreciate the wisdom, or lack, of decisions made years ear-
lier. In short, the construction of an ocean climate model requires a marriage of
research with development, with each phase requiring an unpredictable amount of
time to debate and explore various research avenues. Allowing adequate time re-
quires dedication and support from funding agencies and managers. Absent such,
ocean climate model development is handicapped, the integrity of the simulations
compromised, and the depth of the understanding shallow.

In general, it is critical to maintain a research and development environment
that fosters a healthy balance between addressing the exigencies of the moment
with visions extending out decades. Only by doing so will climate models and
climate modeling reach a new level of respect as hard-sciences. Short of this goal,
the truly massive problems of climate and climate change will remain out of the
reach of hard-science. It is the profound responsibility of leaders in the international
climate science field to foster this atmosphere, especially now that the questions of
climate change are at the forefront of society’s concern.

Stephen Griffies
Princeton, New Jersey, USA
February 11, 2003
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The purpose of this chapter is to introduce ocean climate models and their use
in climate science.

1.1 Ocean models as tools for ocean science

The ocean covers roughly 70% of the earth’s surface, and a column of ocean water
only 3m thick contains as much heat capacity as the full atmospheric column above
(Gill (1982)). Hence, the oceans provide a large reservoir for heat and other con-
stituents of the earth’s climate system, such as the increasing amounts of anthro-
pogenic carbon dioxide. Through its buffering abilities and relatively slow time
scales, the ocean represents the flywheel of the earth’s climate system.

A scientific understanding of the ocean’s mean state as well as its variability
and stability represents a key goal of physical oceanography and climate science.
Due to our inability to perform controlled experiments on large-scale systems stud-
ied in the geosciences, such as the earth’s climate and its component subsystems,
computer models represent a critical tool for rationalizing climate phenomena. For
example, computer models are, at an increasing rate, becoming the primary tools
used to study and predict physical, chemical, and biological characteristics of the
ocean fluid. Such represents a statement about the growing power of computers,
improved knowledge and observations of the ocean, and enhancements in the re-
alism of ocean model simulations.

That ocean models are increasingly being used by all sorts of climate scientists,
including those not having direct experience developing models, is a sign that the
models have enhanced their physical integrity over the past decades to a level
rendering a general respect within the broader climate science community. Cor-
respondingly, as model usage climbs, model developers have a growing responsi-
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bility to ensure that their codes are physically based, numerically sound, and well
documented. Given this mandate, one aim of this book is to establish a level of
ocean model documentation that goes beyond the usual technical discussion that
assumes the model user is familiar with the fundamentals and understands the
physical meanings of the mathematical symbols. Instead, we develop the equa-
tions from a (mostly) first principles perspective and take some care to nurture a
physical understanding of the mathematics.

1.2 Ocean climate models

Models of the ocean range in complexity from the simplest analytic theories that can
be written on the back of an envelope, to the most sophisticated and realistic global
ocean circulation models requiring many thousands of lines of computer code. The
main focus of this text concerns the realistic models and their formulation.

We use the term ocean climate model as a means to distinguish models that sim-
ulate the World Ocean over climatologically relevant time scales, from those simu-
lating, say, regional or basin scale dynamics. The distinctions between these ocean
modeling subfields is decreasing, largely due to the steady growth in computer
power that allows modelers to dispense with some of the simplifications required
only a few years ago. Nonetheless, there remain differences, with choices made by
one subfield unacceptable to those in others. These differences will likely remain
for some years, with associated questions and debates regarding the validity of the
choices.

Within ocean climate modeling, there is one model class that has dominanted
the field since its beginnings in the 1960’s. These are the z-coordinate ocean models,
or simply z-models. This is the class of model that forms the focus of the latter parts
of this book. The main characteristics of this model class, as well as the other two
classes in use for large-scale ocean modeling, are described in Section 5.2.

Simulations of the World Ocean over time scales appropriate for climate (e.g.,
decades to millenia) involve extremely rich and complex arrays of flow regimes
and interactions between components of the climate system. For example, high
latitude oceanography involves strong interactions between the ocean with sea ice
and rivers, and intense air-sea buoyancy forces induce deep convection and the
associated formation of deep water masses. Tropical oceanography involves in-
tense equatorial current systems with rapid adjustments to wind forcing associated
with equatorial Kelvin and Rossby waves, and a powerful interannual mode of
air-sea variability known as El Niño in the Pacific. Oceanography in the subtropi-
cal and subpolar latitudes is dominated by large-scale gyres with meandering and
eddying boundary currents forming their western margins. Indeed, amongst other
differences, the oceans are distinct from the atmosphere by having leading order in-
fluences from the solid earth, where meridional boundaries block otherwise zonal
flow except within the Southern Ocean, relatively steep bottom topography vari-
ations cause flows to feel the bottom throughout many crucial parts of the World
Ocean, and straits and sills funnel water from marginal seas, such as the Mediter-
ranean and Greenland, into the larger ocean basins.

As discussed in Section 5.2, each of the three dominant ocean climate model
classes has advantages and disadvantages when simulating various flow regimes
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encountered in ocean climate modeling. Indeed, only two of the three classes have
routinely been used for global studies (see Griffies et al. (2000a) for discussion).
The main reason that z-models presently dominate the field of ocean climate mod-
eling is that their relative simplicity allowed for the early use of these models for
interesting climate studies for many decades now, going back to the work of Bryan
(1969), Bryan and Lewis (1979), and Cox (1984). Additionally, the z-coordinate is
appropriate for the upper ocean mixed layer, which is important for coupled air-
sea modeling. In contrast, other classes, such as the isopycnal models, require more
sophisticated schemes whose development did not occur until the 1980’s.

Ocean climate models continue to evolve. For example, many egregious prob-
lems identified with early representatives of the different model classes are now
remedied by new numerical treatments. Nonetheless, as argued in Section 5.2, each
class has limitations warranting some focus on developing models with generalized
vertical coordinates. The hope is that these models, using a suitably defined hybrid
vertical coordinate, will reduce many of the egregious problems to mere trivialities.

1.3 Climate change

A central focus of climate science is anthropogenic climate change. Each day, it
seems, there is new scientific evidence that industrial society represents a nontriv-
ial geophysical force. Common questions that the person on the street asks are:
What should we expect? How much of the present climate variability is due to
humans? Providing sound scientifically based answers to these, and other, ques-
tions is nontrivial. Indeed, unequivocal answers are not forthcoming. Instead, as
with weather prediction, probabilistic statements are the best that the science can
provide.

We are at a stage in climate science where the wide variety of climate models
yield a general consensus regarding the large-scale effects of increased greenhouse
gases. Quite simply, the planet will warm, with higher latitudes feeling the effects
moreso than lower latitudes. However, when some more detailed questions are
posed, models provide varying projections. Part of the spread is related to the
chaotic nature of the climate system. Part is due to large uncertainties in future
greenhouse gas emission scenarios. Yet a great deal is due to differing details of
the model formulations and their parameterizations. It is to this latter issue that
climate scientists can make further progress.

Given the critical importance of models for developing and understanding cli-
mate, it is incumbant on model developers to impose the highest standards on
model integrity. In particular, ocean climate models should incorporate realistic
parameterizations and sound numerical formulations. Yet they must do so at a
level of computational expense that does not overly handicap the abilities of the
climate modeler to fully investigate various scenarios. Within the ocean science
community, this mandate to improve the models entrains hundreds of researchers
such as process oriented physicists, chemists, and biologists, seagoing oceanogra-
phers, numerical algorithm developers, software engineers, ocean climate model-
ers, and others. It is anticipated that the questions of climate change will continue
to strongly influence and motivate all areas of climate science for many years.
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FUNDAMENTAL OCEAN EQUATIONS

This part of the book presents the fundamental equations describing the physics
of a continuous ocean fluid. These equations are based on classical continuum
physics using both Newtonian mechanics and quasi-equilibrium thermodynam-
ics. The material is for the most part independent of the niceties of ocean model
numerics. Instead, we focus on the basics. Hence, the following chapters will be
of interest to those aiming to understand the physical content of the mathematical
equations underlying ocean climate models.

The tensor analysis described in Part VI is necessary to arrive at certain results
presented in this part of the book. However, requirements of the reader to penetrate
Part VI are actually quite minimal. Additionally, little previous knowledge of con-
tinuum mechanics is assumed. Instead, the presentation is aimed at the reader who
has a solid foundation in undergraduate physics and vector calculus, yet without a
formal course on continuum mechanics.
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Basics of ocean hydrodynamics
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This chapter introduces some of the basic principles and assumptions forming
the foundations for a mathematical description of ocean hydrodynamics. It is from
this foundation that numerical models are then formulated.

2.1 Some fundamental ocean processes

This book is not a text on oceanography or geophysical fluid dynamics. Nonethe-
less, we find it useful to mention here some physical processes that are important
for the ocean, and thus for representing or parameterizing in realistic ocean circu-
lation models of use for climate science. The list is illustrative, not comprehensive,
and is given as motivation for the interested reader to pursue an understanding by
referring to the appropriate text or the research literature.
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Physical processes in the ocean span space-time scales from millimeters and
seconds to global and millenial. These processes can be classified into large-scale
mean currents with time dependent fluctuations manifesting as waves, turbulence,
large-scale fluctuations of the mean circulation, and fundamental changes in the
overall ocean circulation (e.g., transitions of the overturning circulation). Impor-
tant examples in the wave-like regime include gravity waves set up when the at-
mospheric winds perturb the ocean surface. Indeed, these surface gravity waves
are crucial for transmitting atmospheric momentum into the ocean’s upper plane-
tary boundary layer since they provide a frictional element to the overwise smooth
ocean surface. In the ocean interior, undulations of the stratified density surfaces
are generated through a variety of forcing mechanisms, such as tidal motion over
rough topography. The breaking of these waves is thought to contribute to internal
mixing of density classes, and so helps determine stratification of the ocean interior.
At the ocean’s boundaries, waves are set up which help to transmit information
around ocean basins, with similar waves set up at the equator where a vanishing
Coriolis force acts as an effective boundary allowing for the existence of equatorial
Kelvin waves. Finally, at planetary scales, Rossby waves owe their existence to the
differential Coriolis force (theβ-effect) experienced by large-scale motion on the ro-
tating spherical earth. These waves are important for setting up the ocean’s general
circulation.

As with any hydrodynamical system, some fluctuations can feed off dynamical
instabilities of the mean flow and grow over time. For example, a heavy fluid parcel
overlying a lighter parcel rapidly moves vertically to its level of neutral buoyancy
as it releases its potential energy. This effect leads to convective overturning, which
is an important process for the formation of the oceans’ water masses. An addi-
tional process involved with deep water formation is the cascade of heavy water
down topographic slopes in the certain parts of the World Ocean. These unsta-
ble flows are quite turbulent and so entrain much of the ambient fluid. Another
unstable process, which is ubiquitous in the ocean, arises when gravitationally sta-
ble density fronts, common in a rotating stratified fluid, are perturbed so that the
sloped front breaks down into unstable undulations that transfer potential energy
into kinetic energy. This process, known as baroclinic instability, forms one of the
most important instability mechanisms in geophysical fluids.

In general, after an initial rapid growth phase, unstable fluctuations saturate via
nonlinear wave breaking and tend to evolve into a highly chaotic or turbulent state.
Such turbulent states occur on all scales, from the micros-scale to planetary scale,
and they efficiently stir and mix ocean properties across these scales. At the largest
scales, the turbulence associated with baroclinic instability, known as geostrophic
turbulence, represents the large-scale storms of the ocean, analogous to the synoptic
storms comprising the atmosphere’s weather. Due to differences in vertical stratifi-
cation, the scale of oceanic geostrophic eddies is roughly ten times smaller than the
atmosphere. Hence, simulating these eddies explicitly is far more difficult than in
the atmosphere due to the associated increased computational requirements.

The oceanic processes mentioned above, and numerous others, are important
for understanding, modeling, and predicting the ocean circulation. Such issues
are of fundamental interest scientifically and have driven the fields of physical
oceanography and ocean modeling for much of their history. They have further-
more become increasingly important to society within the past one or two decades
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due to the nontrivial human effects on the earth’s climate system. Numerical mod-
els are thus being relied upon to help answer questions of profound importance
to life on this planet. Physically sound and rational numerical models are critical
as we seek an understanding of the climate’s response to the CO2 experiment now
being conducted.

2.2 The continuum hypothesis

There are roughly 18 grams of pure water per mole, where a mole has roughly
6 × 1023 molecules (Avogodro’s number). As noted in Section 1.2 of Batchelor
(1967), a tiny parcel of pure water with dimensions on the order of 10−3cm has
a volume of 10−9cm3. With a density of 1g/cm3, this parcel has roughly 3× 1019

molecules. For macroscopic purposes, 10−9cm3 is extremely tiny in so far as macro-
scopic properties such as density, tracer concentration, and temperature are effec-
tively uniform over this volume. Yet the 3× 1019 molecules in this volume means
that it is gigantic from the perspective of molecular dynamics. The same sized par-
cel of air, with approximately 29 grams per mole, at the earth’s surface and 0◦C
has a density of 1.3× 10−3g/cm3. Therefore, a 10−9cm3 parcel of air at the earth’s
surface has roughly 3× 1010 molecules, which is again a huge number.

These numbers suggest that for the purposes of geophysical fluid dynamics,
and for many other areas of fluid mechanics, it is extremely accurate to charac-
terize a fluid parcel with volume on the order 10−9cm3 as macroscopically small yet
miscropically large. The macroscopically small characterization is warranted since
such parcels of fluid have a near uniform set of thermodynamic properties (tem-
perature, salinity, tracer concentration, etc.). Hence, the first and second laws of
thermodynamics can be applied to such parcels using a local thermodynamic equi-
librium assumption, which constitutes the basis for classical irreversible or non-
equilibrium thermodynamics (e.g., DeGroot and Mazur (1984)). That is, each fluid
parcel, though generally far from equilibrium with other parcels, itself constitutes
an open thermodynamic system in near-equilibrium.

The microscopically large characterization warrants our treating the fluid as a
mathematical continuum. That is, we need not worry about the discrete nature of
molecules when concerned with ocean dynamics. As such, we will be taking limits
as volumes go to zero with impunity in formulating the differential laws of fluid
motion. Figure 2.1 illustrates this proposition, which formally is known as the con-
tinuum hypothesis. The physical processes mentioned in Section 2.1, and all those of
conceivable importance to ocean dynamics, can be described using the continuum
hypothesis.

As the above discussion suggests, the continuum fluid equations are in princi-
ple related to more fundamental equations of motion, describing the multitude of
molecular degrees of freedom, through a series of averaging operations. Hence, the
laws of continuum fluid dynamics represent a mean field theory. A rigorous proof of
this statement, however, is available only for the simplest of gaseous systems, and
can be found in statistical mechanics books such as Huang (1987). Also, the reader
interested in these issues may find the discussion in Chapter 1 of Salmon (1998)
enlightening. For the ocean, or for other liquid media, the continuum hypothesis
has not been rigorously proven. Nonetheless, its validity is evidenced by its high
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Figure 2.1: Fundamentally, a small parcel of water, say something on the or-
der 10−9cm3, is comprised of a huge number of interacting molecules (roughly
3× 1019), schematically drawn in the left figure. For purposes of geophysical fluid
dynamics, we can safely ignore details of the individual molecules and approxi-
mate the collection of molecules as a continuum, as drawn in the right figure. Such
constitutes the continuum hypothesis.

degree of success in describing the bulk of liquid and gas motions, including those
relevant for geophysical fluid dynamics.

After making the continuum hypothesis, the differential laws of thermodynam-
ics and hydrodynamics are derived by applying Newtonian dynamics and thermo-
dynamics to a collection of local thermodynamically equilibrated fluid parcels. The
resulting field equations possess information regarding a broad spectrum of fluid
motion, with spatial scales reaching from the parcel level to those relevant for global
ocean dynamics, and temporal scales on the order of milliseconds to millennia. The
continuum equations, often called the Navier-Stokes equations, have been shown
through numerous experiments over the past 100-200 years to be very successful
in describing fluid flow. That these equations are relevant over such a large space-
time range represents a spectacular success in providing a rational mathematical
description of natural phenomena.

2.3 Kinematics of fluid motion

Kinematics is the branch of mechanics concerned with the intrinsic aspects of mo-
tion, the geometry of space-time where motion occurs, and the conceptual and
mathematical tools used to describe motion. It is not concerned with the forces
or causes of motion, each of which are within the purview of dynamics. Kinemati-
cal results are therefore very generic and of great utility for a variety of dynamical
situations.

The purpose of this section is to introduce some of the basic kinematics relevant
to the motion of fluid parcels. In particular, it is here that we establish the rela-
tionship between Eulerian and Lagrangian descriptions of that motion. Z-coordinate
ocean models employ an Eulerian framework, in which all spatial coordinates are
fixed on a rotating sphere. In contrast, isopycnal models employ a semi-Lagrangian
framework, in which the vertical coordinate is a function of space-time (hence La-
grangian) yet the horizontal coordinates are fixed (hence Eulerian). Chapter 5 dis-
cusses some mathematical issues of models using such generalized vertical coordi-
nates.



2.3. KINEMATICS OF FLUID MOTION 29

2.3.1 Material and fixed-space coordinates

In describing the dynamics of fluid parcels, we may take the perspective that the
parcels form a continuum of deformable “particles.” In this way, many of the ideas
from point particle mechanics can be transferred over to fluid parcel mechanics. To
proceed in this manner, it is necessary to distinguish between the infinite number of
fluid parcels. Recall that in classical particle mechanics, particles are distinguished
by an integer label. For a continuum of fluid parcels, the integer label becomes
continuous. That is, the fluid parcels are distinguished by ascribing a value for a
continuous label, ζ , to each parcel filling up the fluid continuum. Associated with
this material spatial coordinate is the co-moving or material time coordinate τ mea-
sured by an observer riding along with the fluid parcels. The coordinates (ζ , τ)
are thought of as coordinates in a material space-time. For ideal parcel dynamics,
the only dynamics in material space-time is the trivial dynamics ∂τζ = 0, since the
parcels maintain their integrity for all time (see Figure 2.2). For real fluids, a par-
cel’s identity is lost over time due to the mixing of properties with other parcels. In
general, material coordinates are often called Lagrangian or convected coordinates in
the literature.

Measurements of fluids discussed here are taken by observers living on a gener-
ally curved non-Euclidean surface or volume embedded in a background Euclidean
space-time∗. In particular, for geophysical fluid dynamics, observers are on the sur-
face of a rotating sphere (a non-Euclidean space), approximating the rotating earth,
where the sphere is embedded in a Euclidean space-time background (the space-
time of Newtonian mechanics).

A physical description of the fluid, motivated by the particle mechanics analog,
includes the trajectory of fluid parcels as they move in Euclidean space-time. A
set of coordinates can be used to specify these trajectories (e.g., cartesian, spherical,
cylindrical, etc.), and these are sometimes called physical coordinates. This name is
not preferred here since there is nothing “unphysical” about the material coordi-
nates. Rather, the name fixed or position coordinates is prefered. In turn, it should
be noted that the “fixed” coordinates for ocean modeling are actually rotating co-
ordinates, and so are strictly not “fixed” in the sense of inertial coordinates. Rather,
they are fixed relative to a terrestrial observer’s rotating frame of reference.

The continuum of fluid parcel trajectories is represented by the vector field

x = x(ζ , τ). (2.1)

The vector field x(ζ , τ) measures the Cartesian position of a parcel with material
space-time coordinates (ζ , τ). This position is taken relative to some fixed origin in
Euclidean space. Figure 3.1 illustrates the situation for a fluid parcel moving on a
spherical planet. For geophysical fluids, it is sufficient to assume that fluid parcels
move at speeds well below the speed of light. Therefore, the co-moving time, τ ,
and the time t measured by observers at rest with respect to the origin x = 0 can be
taken to be the same

t = τ . (2.2)

∗For geophysical fluid dynamics, there is no reference to relativistic fluids, which would involve
Minkowski space-time, the space-time of special relativity. Nor is there reference to cosmological
systems, for which the curved space-times of general relativity are relevant.
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The relations (2.1) and (2.2) specify a time dependent coordinate transformation,
or mapping, between the material space and the fixed-space. Since the time param-
eters are the same, it is sufficient to distinguish these two space-times simply by
calling the material space-time asζ-space, and the fixed space-time as x-space. Note
that the number of geometric dimensions needed to describe the material space is
the same as the number of dimensions in the fixed-space. For example, we may
choose to define the material label as the initial position of the field of fluid parcels,
ζ = x(ζ , τ = 0).

ζ

x=x(ζ,τ)
t = 

x

t τ

τ

Figure 2.2: Illustration of the space-time paths or trajectories exhibited by two
ideal fluid parcels. The left panel shows the trajectories as seen in a fixed-space or
Eulerian perspective. The paths are typically curved, which represents motion due
to waves, advection, etc. The right panel shows the same trajectories in the material
space-time. These trajectories are trivial for ideal parcels since they maintain the
same value for their spatial material coordinate ζ , hence exhibiting a linear path
in material space-time. The two pictures are related through the time dependent
coordinate transformation x = x(ζ , τ) and t = τ .

2.3.2 Lagrangian and Eulerian descriptions

The Lagrangian description of a fluid is afforded by knowledge of the continuum of
parcel trajectories x(ζ , τ). The equations of motion are written much as the equa-
tions for a point particle, yet with forcing terms written generally as partial deriva-
tives with respect to the material coordinate ζ and functional derivatives with re-
spect to the parcel trajectory x(ζ , τ).

In contrast, an Eulerian description is afforded by knowledge of the velocity field

v(x(ζ , τ), t) = ∂τ x(ζ , τ). (2.3)

This relation defines the mapping between the Eulerian and Lagrangian descrip-
tions of the fluid: knowledge of one description implies knowledge of the other as
specified through this differential equation.
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2.3.3 ζ-space and x-space transformations

As mentioned in Section 2.3.1, the relation between the space point x and the parcel
trajectory x(ζ , τ) defines a time dependent mapping between the fixed space-time
with the material space-time:

xm = xm(ζa, τ) (2.4)
t = τ , (2.5)

where m = 1, 2, 3 labels coordinates in x-space, and a = 1, 2, 3 labels coordinates
in ζ-space. Although identification of the time parameters t = τ has been made,
it is important to use different symbols. The reason is that the partial derivatives
with respect to τ are taken with the material space coordinates ζ constant, whereas
partial derivatives with respect to t are taken with the fixed-space coordinates x
held fixed. As such, the material time derivative is related to the fixed-space time
derivative through the expression

∂τ = ∂t + ẋm∂m, (2.6)

which follows from the usual rules of coordinate transformations. A more familiar
notation is to introduce the total or material time derivative

d
dt

= ∂t + v · ∇, (2.7)

where v is the Eulerian velocity field related to the time tendency of the parcel’s
trajectory

ẋm(ζ , τ) = vm(x(ζ , τ), t). (2.8)

The nonlinear term v · ∇ = ẋm∂m is known as the transport, or advection, term, with
advection the usual terminology in geophysical fluid dynamics. Advection arises
since an observer at a fixed position x, associated with the Eulerian description, is
not a co-moving or material observer. The Lagrangian observer is co-moving with
the fluid parcel, and is therefore at a fixed material space coordinateζ and measures
time with τ .

The mass of a fluid parcel is given by

dM =$(ζ , τ) dζ . (2.9)

In this expression, $(ζ , τ) is the fluid mass density in material space, and dζ =
dζ1 dζ2 dζ3 is a useful shorthand for the volume element in material space. Due to
the conservation of mass for each parcel

∂τ(dM) = 0, (2.10)

which means that the mass density in material space-time must be independent of
material time:

$(ζ , τ) =$(ζ). (2.11)

Therefore,$(ζ) can be chosen to be the material space mass density at any conve-
nient time.
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The familiar rules of calculus∗ yield an expression for the mass element written
using the x-space coordinates

dM =$ dζ =$ J−1 dx, (2.12)

where

J = det(xm
a )

=
∂x
∂ζ

=
1
3!
εmnpε

abc
(

∂xm

∂ζ a
∂xn

∂ζb
∂xp

∂ζc

)

(2.13)

is the determinant of the transformation matrix between the position coordinates
and material coordinates; i.e., it is the Jacobian, and ε is the totally anti-symmetric
Levi-Civita symbol defined in Section 18.12. Therefore, the mass density of the fluid
as expressed in the position space, ρ, is related to the mass density of the fluid as
expressed in material space,$, by the expression

ρ =$ J−1. (2.14)

Note that uniform mass density in material space ($ = constant) does not imply
uniform mass density in position space, and vice-versa.

2.3.4 Mass and volume conservation

In classical fluid mechanics, mass is conserved for fluid parcels regardless the dy-
namical interactions. Hence, mass conservation naturally is considered as part of
fluid kinematics. We present here an elementary derivation of mass conservation
using an Eulerian description for a fluid devoid of mass sources and sinks. The
derivation proceeds in a manner useful for establishing other fluid kinematical re-
sults.

In ζ-space, conservation of parcel mass implies that ∂τ$ = 0, as mentioned
previously. For x-space, we derive the consequences of mass conservation by set-
ting ∂τ(ρ dx) = 0. Note that since mass is a scalar under the Galilean transforma-
tions relevant for geophysical fluid dynamics, the differential mass conservation
law takes the same form in any frame of reference.

With the mass of a parcel written

dM(ζ) = ρ(x(ζ , τ), t) dx(ζ , τ), (2.15)

conservation of mass for each parcel implies

0 =
d
dt

ln(d M)

=
d
dt

ln(ρ dV)

=
d
dt

ln(ρ dx1 dx2 dx3)

=
d lnρ

dt
+

d
dxm ẋm,

(2.16)

∗See Schutz (1980), or most books on differential forms, for a more elegant proof in terms of the
volume 3-form.
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where
dV = dx (2.17)

is a common notation for the infinitesimal volume of a fluid parcel written in Carte-
sian coordinates. The parcel mass conservation equation (2.16) is satisfied by each
of the parcels throughout the fluid, which implies that it holds at each point of the
fluid at all times. It is therefore convenient to introduce the Eulerian velocity field
v = ẋ, which leads to the statement of parcel mass conservation

d lnρ
dt

= −∇ · v. (2.18)

Expanding the material time derivative allows this equation to be written in the
form of an Eulerian conservation law

ρ,t +∇ · (vρ) = 0, (2.19)

with ρ,t = ∂tρ a useful shorthand.
For many purposes, a seawater parcel can be approximated as incompressible

in the sense that changes in the volume of a parcel are small

∂τ (dV) ≈ 0. (2.20)

This is the case, in particular, when the time changes of a parcel’s density are very
small relative to the density

d lnρ
dt

≈ 0. (2.21)

Letting the approximation become an equality leads to a fluid whose parcels mate-
rially conserve their volume

∂τ (dV) = 0⇒ ∇ · v = 0. (2.22)

Materially conserved volume is part of the Boussinesq approximation, and this ap-
proximation has found much use for ocean modeling. Notably, volume conserva-
tion does not mean the fluid maintains a materially constant density. Indeed, mate-
rial changes in density affect changes in hydrostatic pressure, which in turn drives
much of the ocean’s current systems, especially those at depth.

2.4 Kinematical and dynamical approximations

It is by their success that the Navier-Stokes equations in turn are often cumbersome
to apply in practice. That is, since they encompass such a huge spectrum of dynam-
ical motions, the theoretician, modeler, and experimentalist typically find it difficult
to focus on certain elements of these motions while using the full set of equations.
Reducing the spectral range over which the equations are valid has motivated a
multitude of methods to approximate the equations of fluid motion.

The purpose of this section is to summarize some common approximations
made in ocean climate modeling. We have more precise descriptions of these ap-
proximations in later chapters. For now, we are content to give the general ideas.
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Figure 2.3: Shown here is a schematic of a column of ocean fluid within a gravita-
tional field. The two points indicated within the fluid are at the same distance from
the bottom. However, because of the slightly higher height of fluid above point B,
the hydrostatic pressure at B is greater than the hydrostatic pressure at A.

2.4.1 Hydrostatic approximation

Pressure at a point within a fluid at rest in a gravitational field arises just from the
weight of fluid above the point (see Figure 2.3). That is, vertical pressure gradients
are given by the buoyancy at the point. This situation constitutes the hydrostatic
balance. When the fluid is in motion, vertical pressure gradients are also affected by
vertical accelerations and friction. However, for many geophysically relevant fluid
motions, the dominant balance in the vertical momentum equation remains the
hydrostatic balance. The level to which the hydrostatic balance remains dominant
is directly proportional to the ratio of vertical H to horizontal L scales of motion.
For many motions of direct interest in ocean climate modeling, the vertical scale is
on the order of a few meters to a few kilometres, whereas the horizontal scale is on
the order of tens to thousands of kilometers. Thus, H/L is typically far less than
1/10.

In addition to simplifying the computation of pressure, the hydrostatic approx-
imation filters out sound waves, which are three-dimensional pressure fluctuations
(e.g., Gill (1982) and Apel (1987)). There remains, however, a strictly horizontal
acoustic mode known as the Lamb wave that is not filtered by the hydrostatic ap-
proximation. The Lamb wave propagates at the speed of sound, yet has small en-
ergy and may be dissipated by numerical effects. We have more to say about acous-
tic modes when discussing the Boussinesq approximation in Section 2.4.3, where it
is noted that the Boussinesq approximation filters all acoustic modes from both hy-
drostatic and non-hydrostatic models.

For studies aiming to simulate motions with large vertical accelerations and
relatively small horizontal scales, such as those occuring in convective regions, the
hydrostatic approximation can be an unacceptable limitation. Refer to Marshall
et al. (1997) for a lucid discussion of non-hydrostatic Boussinesq ocean modeling.
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2.4.2 Traditional Approximation

The ocean is a shallow layer of fluid moving on an approximately spherical earth.
When measuring the distance between two points within the ocean, one must use
a metric tensor (Chapter 18). The metric tensor components are functions of the
latitudinal, longitudinal, and radial position within the ocean.

Recognizing the huge scale separation between the depth of the ocean fluid
and the radius of the earth, the Traditional Approximation drops the radial depen-
dence of the metric tensor components (Section 3.1). Instead, it sets the radius to a
constant as given by the radius of a sphere R with the same volume as the earth.
The dynamical equations for a fluid parcel moving on a sphere with this approxi-
mate metric constitute the primitive equations (Chapter 3). As discussed by Marshall
et al. (1997), one may wish to avoid the Traditional Approximation for those situ-
ations where the hydrostatic approximation is not suitable, since here vertical and
horizontal excursions of fluid parcels are comparable. Hydrostatic ocean climate
models typically retain the geometric basis of the Traditional Approximation.

2.4.3 Boussinesq approximation

One common approximation employed in ocean climate modeling is the Boussi-
nesq approximation. From a kinematic perspective, a Boussinesq fluid parcel main-
tains the same volume during its transport through the fluid, regardless the dynam-
ical interactions. Without volume sources, a Boussinesq ocean maintains a constant
total volume. This behaviour is to be contrasted to the more fundamental mass
conservation property of non-Boussinesq fluid parcels, whereby an ocean without
mass sources maintains a fixed total mass. Figure 2.4 provides a schematic of the
differences.

The Boussinesq approximation has been commonly used in ocean climate mod-
els due to the near incompressibility of ocean fluid parcels, and thus the near con-
servation of volume maintained by these parcels. Additionally, a Boussinesq fluid
does not support acoustic fluctuations (e.g., Gill (1982)), thus filtering out the cli-
matologically unimportant acoustic waves. By filtering out such fast and unimpor-
tant waves, an ocean model based on the Boussinesq approximation can support
larger time steps without violating the Courant-Friedricks-Levy (CFL) condition
(e.g., Haltiner and Williams (1980) and Durran (1999). Larger time steps makes the
model more efficient and thus enhances its usability for climate studies.

Nonetheless, as with any approximate description, a Boussinesq fluid has its
limitations, and these limitations have been increasingly scrutinized of late. Most
notably for climate purposes, a Boussinesq fluid does not render an accurate com-
putation of the sea level height. The reason is that it does not incorporate fluctua-
tions in the depth averaged density field (Section 3.3.3). Such steric effects are not in-
corporated into volume conserving kinematics. The example of uniformly heating
the ocean illustrates this point. As with the example given in Figure 2.4, uniformly
heating a non-Boussinesq ocean causes its density to decrease and its volume to
increase in order to maintain a constant mass. Hence, the non-Boussinesq ocean’s
sea level rises under uniform heating. In contrast, uniformly heating a Boussinesq
ocean causes its density to decrease and its mass to decrease in order to maintain a
constant volume. Hence, the Boussinesq ocean’s sea level remains constant under



36 CHAPTER 2. BASICS OF OCEAN HYDRODYNAMICS

Figure 2.4: The left schematic illustrates a mass conserving fluid parcel, as in a non-
Boussinesq ocean. As it is deformed by currents and affected by changes in tem-
perature, salinity, and pressure, the parcel’s volume and density generally change,
yet its mass dM = ρ dV remains constant. In contrast, a Boussinesq fluid parcel
evolves without changing its volume dV = dM/ρ, which allows for changes in its
density and mass. The right schematic is meant to illustrate such constant-volume
deformations. The particular example of heating is revealing. Heating a mass con-
serving parcel reduces its density and so increases its volume, whereas heating a
volume conserving parcel reduces its density and so reduces its mass via virtual
mass fluxes removing mass from the parcel.

uniform heating. The sea level height prognostically computed from Boussinesq
ocean models is therefore insufficient for purposes of predicting sea level changes
associated with global warming.

The pressure within a Boussinesq model is compromised due to the inaccurate
computation of the ocean surface height. Additionally, as volume is conserved in-
stead of mass, Boussinesq fluid parcels generally change their mass via unphysical
virtual mass fluxes, thus influencing the weight of a fluid column, again affecting the
pressure field. We focus here on the effects on pressure since satellite measurements
will soon be able to determine the absolute pressure at the ocean bottom to an ex-
tremely high level of accuracy, sufficient to distinguish a Boussinesq fluid from a
non-Boussinesq fluid (e.g., Wunsch and Zlotnicki (1999) and Hughes et al. (2000)).

Although diagnostic adjustments can be made to account for inaccuracies in
the Boussinesq fluid’s surface height (e.g., Greatbatch (1994) and Mellor and Ezer
(1995)), these adjustments have their limitations, and they do not overcome prob-
lems associated with bottom pressure errors (Greatbatch et al. (2001)). Hence, for
the purpose of checking the accuracy of ocean models as compared to data, we
can fully exploit the satellite bottom pressure measurements only by using a non-
Boussinesq ocean model. In this book, we employ the methods of Greatbatch
et al. (2001) to readily allow for the implementation of either a Boussinesq or non-
Boussinesq z-coordinate ocean model. The degree to which inaccuracies in the
Boussinesq approximation are an issue can therefore be directly tested in such mod-
els.

2.4.4 Rigid lid approximation

The rigid lid approximation assumes that the surface elevation of the ocean fluid is
static. Doing so filters out fluctuations of the ocean associated with motions of the
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ocean surface. Most notably, external mode gravity wave fluctuations cause undula-
tions in the sea level height, and these waves can move at speeds some 100 times
faster than the next fastest internal mode fluctuations. For many climate modeling
purposes, the external gravity waves are only of indirect interest, and so their ab-
sence from the model is of little physical consequence yet of great computational
advantage due to the reduced CFL constraints. It is for these reasons that the meth-
ods of Bryan (1969) exploited the rigid lid approximation.

The most physically unsatisfying consequence of assuming a fixed surface height
is that, as commonly implemented, a rigid lid ocean does not allow the passage of
fresh water across the ocean surface. That is, the typical form of a rigid lid ocean
maintains a constant volume. This is a severe restriction on the utility of the ocean
model, since freshwater fluxes are important in their affect on the ocean’s buoy-
ancy field. There are well known indirect methods to include hydrological forcing
on the rigid lid model, yet they are ad hoc and physically unsatisfying (e.g., Huang
(1993), and Griffies et al. (2001)). Ocean climate modelers have therefore been mov-
ing away from the rigid lid assumption, and moving towards less restrictive free
surface methods. In addition, free surface methods allow for the direct simulation
of tides in ocean climate models, whereas rigid lid models do not.

The most computationally unsatisfying consequence of the rigid lid approxima-
tion is that it introduces an elliptic problem with attendent global boundary condi-
tions. Solving elliptic problems where the geometry, topography, and forcing fields
are complex, as in the World Ocean, is a computationally difficult problem. Addi-
tionally, the implementation of parallel algorithms is hindered by the need to evalu-
ate the global boundary conditions. Hence, although possessing some advanatages
from a theoretical perspective (e.g., by filtering out certain modes that theoretically
may be undesired), ocean climate modelers have generally been moving away from
algorithms involving elliptic problems. The unapproximated hyperbolic system is
proving to be both physically more accurate and computationally more tractable
on parallel machines.

2.4.5 Trends toward reduced approximations

As explained in the previous discussion, approximations may be useful for many
purposes, yet they often come at the cost of reducing the physical integrity and/or
accuracy of the solution. Indeed, as with the rigid lid approximation, they often
have poor computational efficiency. Hence, there is a general trend in ocean climate
modeling towards reducing many of the common approximations (see Griffies et al.
(2000a) for a review of developments in ocean climate modeling).

There are three general reasons to reduce the number of approximations. First,
measurement techniques are getting quite accurate and will improve in the future.
For example, as mentioned in Section 2.4.3, it is anticipated that remote methods
will soon be able to measure ocean bottom pressures accurately enough to distin-
guish between a Boussinesq and non-Boussinesq fluid. Second, approximations
such as the rigid lid approximation place restrictions on the utility of the model
for realistic ocean climate simulations incorporating sea ice, rivers, hydrological
cycles, and tides. Third, the motivation for making approximations in the early
days of ocean modeling were largely based on insufficient computer power. Three
to four decades of ocean modeling have taught us there will “never” be enough
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computer power to do all the experiments desired. Nonetheless, present-day com-
puters do allow us to run global models with increasingly realistic scenarios and
improved skill. Hence, in our aim to more accurately simulate the global ocean
over its broad range of temporal and spatial scales, modelers are uninterested in
handicapping their abilities by making restrictive assumptions on the basic model
equations. Such motivation has led to the gradual elimination of the previously
ubiquitous Boussinesq and rigid lid approximations in ocean climate models. In
some ten years time, global modelers will likely also dispense with the hydrostatic
approximation.

2.5 Averaging over scales and realizations

Oceanic flow is generally nonlinear, chaotic, and turbulent. Correspondingly, the
ocean’s spatial and temporal scales are extremely broad, with fluctuations reaching
from the parcel level and seconds, to the global scale and millennia. Coupling oc-
curs between the scales due to nonlinear cascades of flow properties, such as energy
and variance. Furthermore, we cannot measure every spatial point within a fluid,
nor can we maintain a measurement for all time. Thus, we are limited in our ability
to garner information about the turbulent fluid’s spatio-temporal properties. Sen-
sitive dependence on initial conditions in this turbulent flow then severely limits
our ability to predict the precise evolution of oceanic flow. This lack of information
and limited predictability motivates our formulating an averaged or mean-field set
of continuum fluid equations.

To derive the mean field ocean equations, we envision a multitude of ocean
flows, each differing by their initial and/or boundary conditions. Averaging over
these realizations leads to the ensemble averaged equations of motion. Formally, there
are an infinite number of realizations in an ensemble. Alternatively, averages over
an imagined infinite sized ensemble are replaced by integrations over a probability
distribution function setting the likelihood of a particular phase space configura-
tion. We prefer ensemble averages to space-time averages since ensemble aver-
ages allow for an unambiguous interchange between the averaging operator and
integral/differential operators appearing in the unaveraged equations of motion.
However, we are admittedly non-rigorous in our usage of ensemble averages and
have nothing to say about whether the ocean fluid satisfies the ergodic hypothesis.

Conceptually, we assume that the distance in phase space between members of
an ensemble is directly proportional to the spatio-temporal scales that remain un-
resolved by the resolution of the measurements and/or discrete numerical model.
For example, ensemble members may differ by the phase of a wave-like or turbu-
lent eddying fluctuation occuring on a spatial scale of some tens of kilometres. For
measurements and/or models that resolve only scales greater than some hundreds
of kilometres, these mesoscale features remain unresolved and so constitute part of
the sub-grid scale (SGS) regime (see Chapter 7 for more discussion). Other features
smaller than mesoscale fluctuations also constitute dynamics within the unresolved
spectrum, and so likewise must be averaged over when formulating the equations
describing the large-scale features (see Chapter 6).

As discussed in Chapter 6, a very practical and useful goal for the averaging
methods is to produce averaged kinematical and dynamical equations maintain-
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ing the same mathematical form as the unaveraged equations. Doing so allows
for mathematical properties of the unaveraged equations to be shared by the aver-
aged equations. Although mathematically similar, the terms appearing in the two
sets of equations differ in their interpretation. In particular, the averaged equa-
tions contain terms unknown to the “averaged observer.” These terms take a form
dependent on the dynamics occupying the SGS.

Specifying the SGS terms is a complicated problem in turbulence closure theory.
Notably, most closures contain ad hoc and formally unjustified steps, thus prompt-
ing a multitude of different closures. Unfortunately, ocean model simulations have
proven to be quite sensitive to the general forms of the closures.

Although no complete theory exists to tell us the full details of closures, there is
some very compelling evidence, based on ocean measurements and model simula-
tions, to guide their general form. For example, in large-scale ocean modeling, lat-
eral SGS tracer mixing is predominantly directed parallel to neutral directions (e.g.,
Solomon (1971), Redi (1982), Olbers et al. (1985), McDougall and Church (1986),
McDougall (1987a), Gent and McWilliams (1990), Gent et al. (1995), and Griffies
et al. (1998)). In particular, ocean climate models using horizontally directed tracer
mixing, even those models of very high resolution capable of resolving meso-scale
eddies (Roberts and Marshall (1998)), can be of less physical integrity than those
with neutrally directed mixing. Detailed aspects of neutral physics are addressed
in Chapters 7 and 11–14.

2.6 Numerical discretization

A mathematical description of fluid motion starts from the continuum approxima-
tion, whereby molecular dynamical scales are averaged out to reveal a mean field
set of equations. Then, depending on ones interest in dynamical regimes, selected
approximations are introduced to reduce the huge scales of motion allowed by the
full continuum set of equations. Next, due to incomplete information and sensitive
dependence on initial conditions, averaging methods are required to form a set of
fluid equations which can be integrated on a computer. Setting forms for the SGS
terms renders the averaged equations closed.

After these fundamental mathematical and physical steps are finalized, the ocean
modeler must formulate the averaged equations of motion in a manner accessible
to finite computational capabilities. That is, the approximated, averaged, closed,
continuum partial differential equations must be cast into a discrete form so that
they are accessible to the numerical/algebraic methods interpretable by modern
computers. In turn, solution algorithms must be developed in order to evolve nu-
merical solutions forward in time.

There are various methods for casting the continuum equations into discrete
form. One method integrates the continuum equations over finite grid cells, defin-
ing cell averaged variables, thus resulting in a set of discrete finite volume equations
of motion (Section 6.9). Most ocean climate models follow this approach to some
degree. However, there are notable exceptions. In particular, hydrostatic pressure
at a model grid point is often interpreted as a point-wise value, rather than the
averaged pressure over the depth of the grid cell (see Griffies et al. (2003) for dis-
cussion).



40 CHAPTER 2. BASICS OF OCEAN HYDRODYNAMICS

Numerical discretization breaks the continuum symmetries present in the par-
tial differential equations of fluid mechanics. Hence, solutions realized on the com-
puter may not always correspond to those allowed by the continuum equations.
Eliminating such spurious numerical solutions is a constant concern of the numer-
ical modeler. In general, significant care is required so that the numerical fluid is a
close analog to the continuum fluid.

Assuming the continuum equations are successfully cast into a numerical al-
gorithm, a numerically realized fluid provides the modeler with a powerful tool
to probe the many dynamical regimes present in the equations of motion. That is,
numerical models are powerful tools to perform investigative experiments and to
extrapolate observations into the future via prediction. For example, the modeler
is able to test ideas by altering sub-grid scale parameters, changing boundary forc-
ing or domain geometry, refining the grid mesh sizes to allow the flow to become
more nonlinear, simplifying the dynamical degrees of freedom via approximations,
identifying dominant balances by measuring terms within the model equations,
and projecting scenarios for future ocean climate change due to alterations in at-
mospheric radiative forcing. Such direct experimental methods are unavailable
for studies of large spatio-temporal scales, due to our inability to perform repro-
ducible and controllable experiments with Nature’s climate system. Furthermore,
the suite of solutions available numerically is far larger than those available ana-
lytically. Hence, when combined with analytical methods of highly idealized con-
figurations, laboratory experiments of small-scale phenomena, and in situ, remote,
and paleo ocean observations, numerical models round out the suite of tools for
ocean climate science. Indeed, numerical models have become the repository for
the observations and theories of ocean climate.
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Hydrodynamical equations describing the ocean circulation are based on the
use of Newton’s Laws for a stratified fluid continuum moving on a rotating planet.
Two common approximations are made to the hydrodynamical equations for use in
large-scale ocean climate: (1) the fluid maintains hydrostatic balance, (2) the fluid
comprises a shallow layer on a rotating sphere. With these assumptions, the fun-
damental equations are termed the primitive equations, where primitive refers to the
computation of velocity time tendencies, rather than time tendencies for derived
fields such as vorticity.

3.1 Orthogonal coordinates

The ocean primitive equations are based on taking the Traditional Approximation
to the Navier-Stokes equations. This approximation represents a statement about
the spherical geometry on which fluid parcels move. We summarize here some
mathematical results from Part VI of use in the following.

3.1.1 Spherical and Cartesian coordinates

The World Ocean forms a thin layer of fluid moving on the rotating earth. For pur-
poses of ocean climate modeling, it is sufficient to approximate the earth as a sphere
(see Veronis (1973) for a discussion). Hence, a key goal of this chapter is to formu-
late the dynamical equations describing fluid motion on a rotating sphere. Notably,
the derivations must carefully account for details of the sphere’s non-Euclidean ge-
ometry (see Chapters 18 and 19 for more on differential geometry). Such constitutes
a fundamental distinction from non-geophysical formulations of hydrodynamics
(e.g., Landau and Lifshitz (1987)), where it may be more appropriate to work in
three-dimensional Euclidean space. A rigorous and lucid treatment of fluid motion
on arbitrary smooth surfaces is given by Aris (1962).
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Figure 3.1: A schematic of the coordinates used for describing fluid dynamics on
a rotating sphere, where the rotation axis is aligned through the north pole of the
sphere. The coordinate 0 ≤ λ ≤ 2π is the longitude, with positive values mea-
sured eastward from Greenwich, England. The coordinate φ is the latitude, with
values φ = 0 at the equator and φ = π/2(−π/2) at the north (south) poles. The
radial distance r is measured here with respect to the center of the sphere. The
explicit coordinate transformations are x1 = r cosφ cos λ, x2 = r cosφ sin λ, and
x3 = r sinφ. Note that for many idealized geophysical fluid studies, Cartesian
coordinates refer to those defined locally to a tangent plane at some point on the
surface of the rotating sphere. Suchβ-plane or f -plane coordinates (e.g., Gill (1982);
Pedlosky (1987)) are distinct from the Cartesian coordinates defined here.

Figure 3.1 provides a schematic illustrating the relation between spherical and
Cartesian coordinates of use for describing fluid dynamics on a rotating sphere. The
axis of rotation passes from the southern pole to the northern pole of the sphere.
Both sets of coordinates are fixed on the rotating sphere (non-inertial coordinates).
In the next subsection, we note that most modern global ocean climate models gen-
eralize the angular coordinates (λ,φ) to allow arbitrary locally orthogonal coordi-
nates to specify angular positions on the sphere.

3.1.2 Horizontal orthogonal coordinates

Throughout this book, we employ generalized horizontal coordinates, where hor-
izontal means coordinates within a locally defined tangent plane on the surface of
a spherical earth (see Figure 3.1). As discussed in Chapter 19, the use of orthog-
onal curvilinear coordinates (ξ1,ξ2) allows for the squared infinitesimal distance
between two points in the ocean to be written as

(ds)2 = (h1 dξ1)2 + (h2 dξ2)2 + (dz)2, (3.1)
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where the metric, or stretching functions, h1 and h2 are non-negative. In terms of
the dimensionful physical horizontal distances

dx = h1 dξ1 (3.2)

dy = h2 dξ2, (3.3)

the line element takes the compact form

(ds)2 = (dx)2 + (dy)2 + (dz)2, (3.4)

the volume of an infinitesimal parcel is given by

dV = (h1 dξ1) (h2 dξ2) dz
= dx dy dz,

(3.5)

and the physical components of the horizontal partial derivatives are

∂x = h−1
1 ∂1 (3.6)

∂y = h−1
2 ∂2. (3.7)

Figure 3.2 illustrates these formulae. Notably, although the introduction of physi-
cal displacements brings the metric tensor into a form analogous to that for three
dimensional Euclidean space, the non-Euclidean nature of the sphere manifests by
the non-vanishing commutator

[

∂x, ∂y
]

= ∂x ∂y − ∂y ∂x

= (∂x ln dy) ∂y − (∂y ln dx) ∂x,
(3.8)

which vanishes only when the horizontal geometry is flat instead of curved. In
particular, the use of spherical coordinates leads to

[

∂x, ∂y
]

=
(

tanφ
R

)

∂x. (3.9)

3.2 Geometry of the Traditional Approximation

The Traditional Approximation assumes that the metric functions h1 and h2 are
dependent only on the horizontal coordinates (ξ1,ξ2). Radial dependence of the
metric functions is reduced to a constant radial factor R, where R = 6.371× 106 m
is the radius of a sphere with the same volume as the earth. Therefore, distances,
used to compute partial and covariant derivatives and areas and volumes, are de-
termined by a metric tensor whose components are functions only of the horizontal
position on the sphere.

This approximation is accurate for many purposes because the ocean forms a
thin layer of fluid moving on the outer part of the earth. For example, vertical mo-
tions of fluid parcels in stratified regions of the World Ocean occur over distances
of only a few centimeters to meters per day, which is far smaller than the typical
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ξ2

ξ1 

Figure 3.2: Illustrating the generalized horizontal orthogonal coordinates of use for
global ocean models. The coordinate lines intersect at right angles, but generally
do not follow lines parallel to constant longitude or latitude on the sphere. An
infinitesimal horizontal region has area given by dA = (h1 dξ1) (h2 dξ2) = dx dy.
For spherical coordinates (ξ1,ξ2) = (λ,φ), the infinitesimal horizontal distances
are dx = (r cosφ) dλ and dy = r dφ.

horizontal speeds that reach up to a meter per second. For larger vertical devia-
tions, such as those occuring in convective regions, the Traditional Approximation
may be unwarranted (see Marshall et al. (1997) for a discussion).

In the remainder of this chapter, we derive the differential equations of motion
for fluid parcels moving in the space defined by the Traditional Approximation
metric tensor. Notably, the resulting energy and angular momentum conservation
laws follow as a consequence of casting the dynamical laws within this geometry.
Marshall et al. (1997) summarize controversies related to the precise form of energy
and angular momentum conservation laws for a fluid based on the Traditional Ap-
proximation. Maintaining a focus on the geometric essence of the Traditional Ap-
proximation clarifies these controversies. We provide added comment on this point
in Section 3.9.

3.3 Volume and mass conserving kinematics

As discussed in Section 2.4.3, Boussinesq fluid parcels conserve their volume, whereas
non-Boussinesq fluid parcels conserve their mass. In this section, we highlight the
kinematic issues related to volume and mass conservation. In turn, we derive the
kinematic boundary conditions applicable for Boussinesq and non-Boussinesq flu-
ids.

3.3.1 Mass and volume conservation for parcels

To get started, let us summarize the discussion given in Section 2.3.4 where we
derived constraints that the velocity field must satisfy for mass and volume con-
serving fluid parcels. With the mass of a parcel of seawater∗ given by dM = ρ dV,
mass conservation for the parcel leads to

ρ,t +∇ · (uρ) + (wρ),z = 0, (3.10)

∗The mass of a parcel of seawater includes the mass of freshwater plus the mass of dissolved salts.
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whereas volume conservation leads to

∇ · u + w,z = 0. (3.11)

Both of these equations are referred to as continuity equations, with the relevant one
implied by knowing whether the fluid is mass or volume conserving. We employ
these results in the following discussion of mass and volume conservation applied
over finite regions of fluid.

Boussinesq fluid parcels have mass given by dM = ρo dV for purposes of
developing the momentum and tracer budgets, except when the mass is multi-
plied by gravity, at which point they have the non-Boussinesq dM = ρ dV. This
formulation is somewhat ad hoc, although it has proven to be quite useful. The
ad hoc nature is clearly revealed when considering the gravitational potential en-
ergy budget in Chapter 4. In this case, volume conserving Boussinesq parcel’s
can have their potential energy budgets affected by changes in the parcel’s mass:
D(ρ dV)/Dt = dV (Dρ/Dt) 6= 0. These changes in mass are termed virtual mass
fluxes due to their unphysical nature.

3.3.2 Volume conservation for finite domains

The purpose of this section is to apply the constraint of volume conservation over
a finite control volume, where the surface of the volume represents the free ocean
surface. The result will be expressions for the time tendency of the free ocean sur-
face as well as kinematic boundary conditions satisfied at the ocean surface and
bottom.

For this purpose, consider the control volume of fluid shown in Figure 3.3. The
position z = η is the time dependent vertical deviation from a resting ocean state
z = 0, and z = −H is the stationary position of the impenetrable bottom topogra-
phy. The volume of fluid within the control volume is given by

V =
∫

dA
η
∫

−H

dz

=
∫

D dA,

(3.12)

where
D = H + η (3.13)

is the vertical thickness of a fluid column as a function of horizontal position and
time, and dA = dx dy is the horizontal cross-sectional area element. Assuming the
control volume is filled with volume conserving fluid parcels, conservation of the
domain volume implies that the volume’s time tendency

V,t =
∫

dA D,t (3.14)

equals the sum of all volume fluxes passing across the domain boundaries

V,t =
∫

dA
(

qw + N̂ · v(−H)−∇ ·
∫ η

−H
dz u

)

. (3.15)
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z=−H

z=η
z=0

N(−H)

N( )η

Figure 3.3: A control volume of fluid for use in discussing volume and mass con-
servation and kinematic boundary conditions. The vertical side-boundaries are
assumed stationary and penetrable, the bottom topography at z = −H is gener-
ally non-flat, impenetrable, and stationary, and the free surface at z = η is gen-
erally non-flat, penetrable, and time dependent. The surface orientation vector is
given by N̂ = (−∇η, 1). To a high degree of accuracy for climate modeling pur-
poses, N̂ ≈ ẑ, although we do not rely on this approximation when formulating the
boundary conditions. The bottom orientation vector is given by N̂ = (∇H, 1). Un-
dulations of the surface height are exagerated here for illustrative purposes. In the
real ocean, topographic variations can reach from the ocean bottom to top (thou-
sands of meters), whereas the surface height variations are on the order of a few
centimeters to meters. Furthermore, for mathematical simplicity, the bottom and
surface boundaries are assumed to never “overturn” or break. Hence, the orienta-
tion vector always has a positive vertical component. In particular, this restriction
precludes our formulation from providing an explicit framework to study breaking
surface waves.



48 CHAPTER 3. OCEAN HYDRODYNAMICS

Convergence of the horizontal flux captures the contribution from volume entering
horizontally through the sides of the control volume. The term

∫

dA N̂ · v(−H) is
the tendency of volume entering through the bottom topography, with

N̂ = (∇H, 1) (3.16)

an orientation vector pointing from the bottom topography into the ocean domain
(see Figure 3.3). However, N̂ · v(−H) vanishes since the bottom is assumed to be
impenetrable, and so the velocity satisfies a no-normal flow or bottom kinematic
boundary condition

N̂ ·V = u · ∇H + w = 0 at z = −H. (3.17)

In contrast, qw dA is the generally nonzero tendency of volume crossing the pen-
etrable free surface, with qw > 0 signaling volume entering the ocean domain. In
a volume conserving model, qw dA is assumed equivalent to the volume of fresh
water per unit time vertically crossing the free surface

qw = ẑ · N̂
(

volume/time
dA

)

= ẑ · N̂ (P− E + R).
(3.18)

In this equation,
N̂ = (−∇η, 1) (3.19)

is an orientation vector at the ocean surface (see Figure 3.3). P− E + R represents
the volume input from precipitation, evaporation, and/or river runoff.

Equating the volume tendencies given by equations (3.14) and (3.15) leads to
the balance of thickness within each vertical fluid column in the control volume

η,t +∇ ·
(
∫ η

−H
dz u

)

= qw. (3.20)

Defining

U =
η
∫

−H

dz u (3.21)

as the vertically integrated horizontal velocity leads to the surface height equation
for a volume conserving fluid

η,t = −∇ ·U + qw. (3.22)

The convergence term affects surface height values via changes in the dynamical
fields within the ocean model, whereas the fresh water term affects surface height
via changes in boundary forcing. Figure 3.4 illustrates this balance.

Integrating the free surface height equation (3.22) horizontally over the full
ocean domain leads to the volume balance

∂t

(
∫

dA D
)

=
∫

dA qw. (3.23)
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Therefore, the ocean’s volume changes only due to the passage of fresh water across
the free surface. Changes in the interior dynamics cancel out when integrated over
the full domain. This is an important relation to maintain in the numerical Boussi-
nesq ocean model to ensure that total volume is indeed conserved.

Applying the horizontal divergence operator onto the vertical integral in equa-
tion (3.20) leads to

(∂t + u(η) · ∇) η+ u(−H) · ∇H +
η
∫

−H

dz∇ · u = qw. (3.24)

As discussed in Section 3.3.1, volume conserving fluid parcels have a velocity field
satisfying ∇ · u + w,z = 0 (equation (3.11)). Use of this divergence-free condition,
as well as the bottom kinematic boundary condition (3.17), yields the surface kine-
matic boundary condition for a volume conserving fluid

(∂t + u · ∇) η = qw + w at z = η. (3.25)

This boundary condition can be written in the equivalent form

η,t = N̂ · v + qw at z = η, (3.26)

where N̂ = (−∇η, 1) is the surface orientation vector. We see that local time ten-
dencies of the surface height are driven by fresh water fluxes at the surface as well
as the projection of the surface velocity onto the surface orientation vector. Compar-
ing the boundary condition (3.26) with the column integrated budget (3.22) leads
to the balance

N̂ · v = −∇ ·U at z = η. (3.27)

This expression says that convergence of the vertically integrated transport in a
Boussinesq fluid is balanced by the projection of the surface velocity onto the sur-
face orientation vector. For a rigid lid Boussinesq ocean (see Section 2.4.4),∇ ·U = 0
which then leads to N̂ · v = 0. We have more to say about the rigid lid ocean in Sec-
tion 10.8.

3.3.3 Mass conservation for finite domains

We now proceed in a manner parallel to the previous section, yet here consider a
control volume full of mass conserving fluid parcels. The total mass of fluid inside
the control volume is given by

M =
∫

dA
η
∫

−H

ρ dz, (3.28)

where ρ is the seawater’s mass density. Mass conservation implies that the time
tendency of mass

M,t =
∫

dA ∂t





η
∫

−H

dzρ



 (3.29)
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U U

qw

D=H+η

Figure 3.4: The balance of volume within a column of Boussinesq fluid extending
from the free surface to the ocean bottom is determined by three processes as given
by equation (3.23): η,t = −∇ · U + qw. These effects are (1) the input of volume
across the ocean surface from fresh water, (2) the convergence of volume associ-
ated with the vertically integrated horizontal currents, (3) and the time dependent
fluctuations of the ocean surface height.

changes due to imbalances in the mass flux passing across the boundaries

M,t =
∫

dA



qw + N̂ · v(−H)ρ(−H)−∇ ·
η
∫

−H

dzρ u



 . (3.30)

In this equation, ρ(−H) is the density of water entering the domain through the
bottom topography at z = −H. Yet, as in the volume conserving case, the bottom is
assumed impenetrable, thus leading to the no-normal flow condition N̂ · v(−H) =
0. The term

qw = ẑ · N̂
(

mass/time
dA

)

= (ẑ · N̂) (P− E + R)ρw

= qw ρw

(3.31)

represents the mass flux of fresh water (mass per unit time per unit area) crossing
the free surface. Equivalently, it is the vertical momentum density of the fresh wa-
ter. Equating the time tendencies given by equations (3.29) and (3.30) leads to a
mass balance within each vertical column of fluid in the control volume

∂t





η
∫

−H

dzρ



+∇ ·





η
∫

−H

dzρu



 = qw ρw. (3.32)
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Likewise, integrating horizontally over the full ocean domain and using no-flux or
periodic side boundary conditions leads to the mass balance

∂t





∫

dA
η
∫

−H

dzρ



 =
∫

z=η

dA qw ρw. (3.33)

Hence, the ocean’s mass changes only due to the passage of fresh water across the
free surface. This is an important relation to check in the numerical non-Boussinesq
model to ensure that total mass is indeed conserved. It is the non-Boussinesq analog
to the volume conservation statement given by equation (3.23).

In deriving the free surface equation for a mass conserving fluid, it is useful to
introduce the density weighted velocity field

ρo ṽ = ρ v (3.34)

and the vertical integral of its horizontal components

Ũ =
η
∫

−H

dz ũ. (3.35)

Notably, ρ v = ρo ṽ represents a mass flux (mass per unit time per unit area), and
so ṽ is the mass flux normalized by the constant Boussinesq reference density

ρo = 1035 kg/m3 (3.36)

(see page 47 of Gill (1982)). Equivalently, ρo ṽ is the linear momentum density (mo-
mentum per unit volume) carried by a fluid parcel. Likewise, ρo Ũ is the vertically
integrated horizontal mass flux, or vertically integrated horizontal momentum den-
sity. With these definitions, the mass balance (3.32) takes the form

∂t





η
∫

−H

dzρ



 = −ρo∇ · Ũ + qw ρw. (3.37)

This equation should be compared to the analogous result (3.22) valid for Boussi-
nesq fluids.

To isolate the surface height tendency, and thus to highlight the main differences
from equation (3.22), two approaches are apparent. One approach applies the time
derivative in equation (3.37) to render

ρ(η) η,t = −ρo∇ · Ũ + qw ρw −
η
∫

−H

dzρ,t. (3.38)

An alternative arises from introducing the vertically averaged density

ρz =
1

H + η

η
∫

−H

dzρ, (3.39)
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thus leading to the surface height equation for a mass conserving fluid

ρz η,t = −ρo∇ · Ũ + ρw qw − D ∂t ρ
z, (3.40)

where D = H + η is the total thickness of the fluid column. Figure 3.5 illustrates
the terms in this equation.

Comparison of equation (3.40) with the analogous surface height equation (3.22)
for a volume conserving fluid reveals the following main differences. First, it is the
convergence −(ρo/ρ

z)∇ · Ũ rather than −∇ · U that drives the surface height in
mass conserving fluids, and the density ratio (ρw/ρ

z) weights the fresh water con-
tribution. These two processes have direct analogs with the Boussinesq fluid, where
the convergence term arises from changes in the vertically integrated dynamics,
and the fresh water term arises from boundary forcing. Additionally, −D ∂t lnρz

represents a fundamentally new dynamical process that expresses a change in free
surface height upon changing the vertically averaged density. If the vertically aver-
aged density decreases, the surface height increases, and vice versa. This steric effect
is absent from the Boussinesq fluid’s surface height equation, thus necessitating a
diagnostic correction to compute the absolute surface height for sea level studies
with Boussinesq models (Greatbatch (1994); Mellor and Ezer (1995)). However, as
noted by Greatbatch et al. (2001), the diagnostic correction misses a potentially sig-
nificant level of spatial variability in the surface height that is captured by the non-
Boussinesq surface height. Such differences may be important for sea level studies,
especially those associated with climate change.

To derive the surface kinematic boundary condition, we apply the time and
space derivatives throughout equation (3.32) to yield

ρ(η) (∂t + u(η) · ∇) η+ u(−H) · ∇H

+
η
∫

−H

dz (ρ,t +∇ · (uρ)) = qw ρw. (3.41)

Recall from Section 3.3.1 that a mass conserving parcel of fluid satisfies ρ,t +∇ ·
(uρ) + ∂z (wρ) = 0 (equation (3.10)). Using this result with the bottom kinematic
boundary condition (3.17) leads to the surface kinematic boundary condition appli-
cable for a mass conserving fluid

(∂t + u · ∇) η = (ρw/ρ) qw + w at z = η. (3.42)

Comparison with the analogous result (3.25) applicable to a volume conserving
fluid reveals that the only difference is the density ratio (ρw/ρ) weighting the fresh
water flux. Introducing the linear momentum density ρo ṽ = ρ v leads to the equiv-
alent form

(ρ ∂t + ρo ũ · ∇) η = ρw qw + ρo w̃ at z = η. (3.43)

Finally, introducing the surface orientation vector N̂ = (−∇η, 1) leads to

ρ η,t = ρo N̂ · v + ρw qw at z = η. (3.44)

Comparing the column integrated mass budget (3.38) with the surface kinematic
boundary condition (3.44) leads to the balance

ρo N̂ · v = −ρo∇ · Ũ−
η
∫

−H

dzρ,t at z = η. (3.45)
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Figure 3.5: The balance of mass within a column of non-Boussinesq fluid extending
from the free surface to the ocean bottom is determined by four processes as given
by equation (3.40): ρz η,t = −ρo∇ · Ũ + ρw qw − h ∂t ρ

z. These effects are (1) the in-
put of mass across the ocean surface from fresh water, (2) the convergence of mass
associated with the vertically integrated horizontal linear momentum, (3) time ten-
dencies in the vertically averaged density, (4) and the time dependent fluctuations
of the ocean surface height.

This expression says that projection of the surface velocity onto the surface orien-
tation vector is balanced by convergence of vertically integrated momentum per
volume and the depth integrated time tendencies in the seawater density. The sec-
ond term, as noted already, accounts for the steric effect of density changes within
a fluid column, and this term is absent in the Boussinesq fluid.

3.4 Principles of continuum dynamics

The purpose of this section is to summarize some general dynamical principles
forming the basis of classical continuum mechanics. The book by Aris (1962) is
recommended for a more thorough discussion. By establishing these ideas, we
help to support our application of Newton’s Laws of motion to infinitesimal fluid
parcels in Section 3.5.

3.4.1 Position, velocity, and acceleration

The position of a parcel of a continuous media is described by a general coordinate
~ξ = (ξ1,ξ2,ξ3), withξ3 = z the choice for z-coordinate ocean models. As discussed
in Chapter 18, coordinates carry contravariant labels, hence the upstairs placement
of the indices on ξa. In other words, the position of a parcel is given by the vector
position ~ξ = ξa~ea with respect to an appropriate set of basis vectors ~ea. Note that
the arrow over an object, thus symbolizing a vector, is typically replaced in the
following by the boldface for brevity in notation.
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The time rate of change of the position defines the parcel’s velocity. As time does
not carry tensorial properties in non-relativistic dynamics, velocity v = dξ/dt =
d(ξa~ea)/dt is also a vector. Likewise, the parcel’s acceleration a = dv/dt is a vector.
In order for Newton’s law of motion to be tensorially consistent, it follows that the
forces per unit mass acting on a parcel, which drive the acceleration, are vector
quantities. The tensorial properties of the equations for fluid flow are based on
these statements about position, velocity, and acceleration.

3.4.2 External/body and internal/contact forces

The force vectors acting on an arbitrary volume of a continuous media are of two
kinds. The first are external or body forces, such as gravitation, Coriolis, and elec-
tromagnetic forces. These forces act throughout the extent of the media. The total
body force acting on the volume is given by the integral of the external force per
unit mass f multiplied by the mass of the media

Fext =
∫

fρ dV. (3.46)

For example, the gravitational force acting on a volume of fluid is given by

Fgravity =
∫

gρ dV, (3.47)

where g is the acceleration of gravity, or equivalently the gravitational force per
unit mass.

The second kind of forces are internal or contact forces, such as pressure forces
and frictional forces. These forces act on a volume of the continuous media through
affecting boundaries of the volume. Note that point particles, having no finite ex-
tent, do not experience internal or contact forces. Cauchy’s Stress Principle (e.g.,
Chapter 5 of Aris (1962)) states that the force per unit area exterted by the material
outside the volume is a function of the position within the volume, the time, and
the orientation of the boundaries of the surface. We do not justify this principle
since its consequences are familiar and intuitive. For internal boundaries, the total
contact force exerted on the volume V through its boundaries ∂V is given by

Fint =
∫

t(n̂) dA (3.48)

where n̂ is the outward normal∗ to the domain boundary, t(n̂) = t(n̂)(ξ , t, n̂) is the
force per unit area, or contact stress, exterted on the boundary ∂V by the surround-
ing material, and dA is the area element of the boundary. The functional depen-
dence of the contact stress on the normal direction can be solved through invoking
Newton’s Second Law, as now described.

3.4.3 Local equilibrium of contact stresses

The conservation of linear momentum (i.e., Newton’s Second Law) states that the
sum of the external and internal forces acting on a fluid volume are equal to the
acceleration

d
dt

∫

vρ dV =
∫

fρ dV +
∫

t(n̂) dA. (3.49)

∗A normal to a surface is a one-form, as discussed in Chapter 18
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There is an important consequence of this relation that follows from allowing the
volume to smoothly go to zero without changing the shape. Assuming the inte-
grands are well behaved, the volume integrals vanish as L3, where L is a character-
istic dimension of the volume. The surface integral, however, vanishes only as L2.
Consequently, dividing equation (3.49) by L2 yields the relation

lim
L→0

1
L2

∫

t(n̂) dA = 0. (3.50)

This result implies that the stresses acting on the volume are locally in equilibrium. In
other words, the sum of the internal stresses acting on all sides of an infinitesimal
volume vanish. In particular, t(n̂) = −t−(n̂), which is a statement of Newton’s Third
Law.

3.4.4 The stress tensor

We now apply the local equilibrium property to an infinitesimal volume with four
flat sides, three of which are aligned along the negative coordinate axes directions,
and the fourth directed in an arbitrary slanted direction (see Figure 5.1 of Aris
(1962)) defined by the normal n̂ = na ẽa, with ẽa for a = 1, 2, 3 representing a ba-
sis of one-forms (see Section 18.6 for discussion of one-forms ). Local equilibrium
implies

t(n̂) dA− t(1) dA1 − t(2) dA2 − t(3) dA3 = 0, (3.51)

where dA is the area of the slanted face, dAa are the areas of the other three faces,
and each face has a corresponding force per unit area directed normal to the respec-
tive face. The negative signs arise from the projection of the areas onto the negative
coordinate directions. Now the projection of the areas dAa onto the direction de-
fined by n̂ is given by dAa = na dA. Hence, equation (3.51) takes the form

t(n̂) = t(1) n1 + t(2) n2 + t(3) n3. (3.52)

As such, the stress in an arbitrary direction defined by n̂ can be written as the lin-
ear sum of the three stresses projected along the coordinate axes, each weighted by
the projection of the normal along those axes. We can summarize this equation by
introducing Tba as the a′th component of the stress t(b), and tb

(n̂) as the b’th compo-
nent of the stress t(n̂). With this notation, local equilibrium implies the stress along
a direction defined by n̂ is linearly related to n̂ through

tb
(n̂) = Tba na. (3.53)

Since tb
(n̂) are components to a vector, and na are components to a one-form, the

linear proportionality coefficients Tba form the components to a second order stress
tensor. We are mostly concerned with two types of stress: diagonal stresses as-
sociated with pressure, and stresses associated with friction. We discuss pressure
more in this chapter, and Chapter 15 details the symmetric stresses associated with
horizontal deformations of fluid parcels.

The reasoning leading to the stress tensor implies that the internal stresses t(n̂),
which are generally functions t(n̂)(ξ , t, n̂) of space, time, and the normals, are actu-
ally quite simple in that they can be summarized by nine quantities Tab(ξ , t) that
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provide the linear proportionality between stresses and the normals. Additionally,
since the result of this reasoning led to a proper tensorial or covariant expression
(3.53), the result remains form invariant under an arbitrary change in coordinates.

3.4.5 Equations of motion

The relation (3.53) between the contact stresses and the stress tensor brings the
equations of motion (3.49) to the form

d
dt

∫

ρ va dV =
∫

ρ f a dV +
∫

Tab nb dA. (3.54)

As described in Section 19.10, the covariant form of Gauss’s Law, or the Divergence
Theorem, can be applied to the area integral to yield

d
dt

∫

ρ va dV =
∫

ρ f a dV +
∫

Tab
;b dV, (3.55)

where the semi-colon denotes a covariant derivative (Section 19.2.2). Since the vol-
ume under consideration is arbitrary, this integral relation is satisfied only if it is
satisfied as a differential balance for infinitesimal fluid parcels. Such provides a
theoretical basis for the derivations provided in Section 3.5.

3.5 Dynamics of fluid parcels

Given the theory developed in Section 3.4, we apply Newton’s Laws with impunity
to infinitesimal fluid parcels. That is, we derive the dynamical equations for a fluid
parcel traveling on a general trajectory x(ζ , τ) with velocity v = ∂τx(ζ , τ), where
(ζ , τ) is the material space-time coordinates of the parcel (see discussion in Section
2.3). We use Newton’s Second Law by equating the time tendency of the fluid
parcel’s linear momentum (ρ dV) v to forces acting on the parcel. Although this
approach is Lagrangian in character, we derive Eulerian equations which consider
time tendencies for the linear momentum density ρ v = ρ(x, t) v(x, t) instead of the
parcel’s trajectory x(ζ , τ).

Many details in this section rely on the tensor analysis presented in Chapters
18 and 19. Nonetheless, these steps in the derivation can be easily skipped without
sacrificing continuity in the overall presentation.

3.5.1 Time tendency of the linear momentum

The fluid parcel’s linear momentum has a time tendency given by

∂τ(vρ dV) = (ρ dV) ∂τv

= (ρ dV)
dv
dt

,
(3.56)

where ∂τ = d/dt is the material time derivative following the fluid parcel, and
∂τ(ρ dV) = 0 since the parcel conserves its mass. For parcel’s moving on the sphere,
it is necessary to use the tensor analysis tools presented in Chapters 18 and 19 to
express the parcel’s acceleration dv/dt in general coordinates fixed on the sphere.
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Let us start by noting that a tensorial component of the parcel’s acceleration is
given by

dva

dt
= va

,t + vb va
;b

= va
,t + (vb va);b − va vb

;b

(3.57)

where a = 1, 2, 3 is a label for the three spatial coordinates, and the semi-colon
notation signifies the covariant derivative introduced in Section 19.2.2. The second
step introduced the covariant divergence of the velocity vb

;b and this can be replaced
by the following through use of mass conservation (3.10)

ρ vb
;b = −(∂t + va ∂a)ρ (3.58)

to yield

ρ
dva

dt
= (ρ va),t + (ρva vb);b. (3.59)

The product ρva vb comprises the elements to a second order symmetric tensor. As
shown in Section 19.6, the covariant divergence of such a tensor is given by

(ρva vb);b =
1√
G

(√
G va vb

)

,b
+ Γ a

bc vb vc. (3.60)

In this expression,
√
G = h1 h2 h3 is the square-root of the metric tensor’s determi-

nant (see Section 3.1). Multiplication by ha, without an implied sum over a, leads
to the physical components of the density weighted acceleration

ρ
dv(a)

dt
= (ρ v(a)),t +∇ · (ρ v(a) v)

+ ρ vb ha (vc Γ a
bc − va∂b ln ha), (3.61)

where
v(a) = (u, w) = (u, v, w) (3.62)

are the physical velocity components, each with dimensions length per time. Use
of the Christoffel symbols from Section 19.2.2 leads to

ρ
du
dt

= (ρ u),t +∇ · (ρ u v)− ρ v (v ∂x ln h2 − u ∂y ln h1) (3.63)

ρ
dv
dt

= (ρ v),t +∇ · (ρ v v) + ρ u (v ∂x ln h2 − u ∂y ln h1) (3.64)

ρ
dw
dt

= (ρw),t +∇ · (ρw v). (3.65)

As in Section 3.1, introduce the physical displacements dx = h1 dξ1, dy = h2 dξ2

and use ∂1(dξ2) = ∂2(dξ1) = 0. Doing so eliminates the stretching functions in
favor of the physical displacements

ρ
du
dt

= (ρ u),t +∇ · (ρ u v)− ρ v
(

v ∂x ln dy− u ∂y ln dx
)

(3.66)

ρ
dv
dt

= (ρ v),t +∇ · (ρ v v) + ρ u
(

v ∂x ln dy− u ∂y ln dx
)

(3.67)

ρ
dw
dt

= (ρw),t +∇ · (ρw v), (3.68)



58 CHAPTER 3. OCEAN HYDRODYNAMICS

which can be written in the short-hand form

ρ
dv
dt

= (ρ v),t +∇ · (ρ v v) +M (ẑ ∧ ρ v), (3.69)

where
M = v ∂x ln dy− u ∂y ln dx (3.70)

defines an advective metric frequency. In spherical coordinates where dx = (R cosφ) dλ,
dy = R dφ, ∂x = (R cosφ)−1∂λ, and ∂y = R−1∂φ,

M = (u/R) tanφ (3.71)

and
ρ

dv
dt

= (ρ v),t +∇ · (ρ v v) + (u/R) tanφ (ẑ ∧ ρ v). (3.72)

The advective metric frequency is typically quite small due to the size of the earth’s
radius

R = 6.371× 106 m. (3.73)

For example, a zonal current of 0.1m s−1 at 45◦N latitude has an advective metric
frequency M ≈ 1.6 × 10−8s−1, or roughly 10−4 times smaller than the Coriolis
frequency f = 1.03× 10−4s−1 (Section 3.5.2).

The advective metric force densityM (ẑ ∧ ρ v) arises from the nontrivial met-
ric functions h1 and h2, and it appears as an added rotational force analogous to
the Coriolis force (Section 3.5.2). It arises from our choice of coordinate frame of
reference, whereas the Coriolis force appears since we choose to work in a non-
inertial rotating reference frame. As with the Coriolis force, the advective metric
force does no work on a fluid parcel since it is perpendicular to the parcel’s veloc-
ity: v · (ẑ ∧ v) = 0. Hence, it does not affect the parcel’s kinetic energy. This result
provides a good check on the manipulations, since work and kinetic energy are
scalars, and so cannot be influenced by coordinate dependent metric components.
Additionally, the frequencyM vanishes for some coordinate choices and remains
nonzero for others. Hence,M is not a tensor (see Section 19.1).

3.5.2 Motion on a rotating sphere

As discussed in Section 3.1, we approximate the earth as a sphere with angular
velocityΩ about an axis through the north pole (Figure 3.1). We introduce here the
issues relevant for dynamics in such a rotating reference frame.

3.5.2.1 Earth’s angular velocity

The earth’s angular velocity is comprised of two main contributions: the spin of the
earth about its axis, and the orbit of the earth about the sun (see Figure 3.6). Other
astronomical motions can be neglected. Therefore, in the course of a single period of
24× 3600 = 86400s, the earth experiences an angular rotation of (2π + 2π/365.24)
radians. As such, the angular velocity of the earth is given by

Ω =
(

2π + 2π/365.24
86400s

)

=
( π

43082

)

s−1

= 7.292× 10−5s−1.

(3.74)
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Figure 3.6: Illustrating the earth-sun system, whereby angular velocity of the earth
is associated both with rotation about the earth’s axis, and orbits about the sun.
This angular velocity determines the strength of the Coriolis force.

To an extremely high degree of accuracy, this velocity is assumed constant in time
for purposes of ocean climate modeling.

3.5.2.2 Inertial and non-inertial frames

The preferred frame of reference for describing geophysical fluids is that for terres-
trial observers fixed on the rotating spherical planet. A rotating frame is not inertial,
and so there are non-inertial terms appearing in the equations of motion that must
be taken into account. To derive the relations between inertial and non-inertial ob-
servers, we employ the general operator relation (e.g., Marion and Thornton (1988)
and Gill (1982))

(

d
dt

)

inertial
=
(

d
dt

)

rotating
+Ω ∧ . (3.75)

Applying this relation to the position vector r of a fluid parcel leads to

vinertial = v +Ω ∧ r, (3.76)

where v = vrotating is the parcel’s velocity in the rotating frame. Note that because r
is the position vector for a fluid parcel, the time derivative d/dt is the material time
derivative. Applying the relation twice leads to

(

d2 r
dt2

)

inertial
=

(

(

d
dt

)

rotating
+Ω∧

)(

(

dr
dt

)

rotating
+Ω ∧ r

)

(3.77)

=
d2r
dt2 + 2Ω ∧ v +Ω ∧ (Ω ∧ r)

= v̇ + 2Ω ∧ v−∇ (Ω r cosφ)2/2.

where v̇ is the parcel’s acceleration in the rotating frame, and Ω is assumed to be
constant in time.

3.5.2.3 Effective gravitational force

Excursions by a fluid parcel in the radial direction away from the center of the
sphere introduce changes to the particle’s gravitational and centrifugal potential
energies. It is useful to combine these two accelerations into an effective gravitational
force.
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The gravitational potential energy of a point mass m at a radius r = z + R from
the earth’s center is given by

Φ = −G Me m
z + R

≈ −G Me m
R

+
(

G Me

R2

)

m z

= constant + ge m z,

(3.78)

where
ge = G Me/R2. (3.79)

is the gravitational acceleration. Agreeing to measure the zero of gravitational po-
tential energy at the earth’s surface (z = 0) allows us to ignore the dynamically
irrelevant constant term in Φ. Note that G = 6.67 × 10−11N m2 kg−2 is New-
ton’s gravitational constant, Me = 5.98 × 1024 kg is the mass of the earth, and
R = 6.371 × 106 m is the radius of a sphere with the same volume as the earth.
The restriction of z << R is motivated by our interest in fluid parcel motion in
the ocean, where this inequality is maintained to a high degree of accuracy for all
motions. For this reason, we can safely drop terms going as (z/R)2 or higher order
in the gravitational potential energy.

Combining the gravitational potential for a point particle at rest with that from
the centrifugal force leads to the effective gravitational force acting on the particle
(see e.g., Fetter and Walecka (1980) pages 40 and 48)

m g = −m∇(r ge − (Ω r cosφ)2/2)

= −m(ge − rΩ2 cos2φ) r̂− (m rΩ2 cosφ sinφ) φ̂ .
(3.80)

The effective gravitational force is non-central due to the effects of rotation. Hence,
if the earth were an ideal fluid, matter would flow from the poles towards the equa-
tor, thus ensuring that the earth’s surface would everywhere be perpendicular to
the effective gravitational acceleration g. Indeed, the earth does exhibit a slight
equatorial bulge, yet inhomogeneities in the earth’s composition and surface load-
ing by continents and glaciers make its shape differ from the ideal case.

For purposes of ocean climate modeling, and consistent with the Traditional
Approximation, we make the following assumptions regarding the effective gravi-
tational force. Firstly, we assume that the local vertical direction ẑ is defined by the
direction of the effective gravitational acceleration

g = −∇Φ
= −g ẑ,

(3.81)

where
Φ = g z (3.82)

is the gravitational potential energy per mass. Secondly, we assume that the effec-
tive gravitational acceleration g has a magnitude given by

g = 9.7963 m s−2, (3.83)
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which is the areal average of ge taken over the surface of the ocean (see Section
3.5.2.4). Notably, we ignore changes in the effective gravitational acceleration as-
sociated with centrifugal accelerations or changes in the distance from the earth’s
center. Thirdly, we assume that the angular directions (λ̂ , φ̂ ) remain locally or-
thogonal to the local vertical direction ẑ, thus neglecting non-sphericity of the earth.

3.5.2.4 Gravity for a global ocean model

The real earth is not perfectly spherical, yet we assume such for purposes of ocean
climate modeling. Thus, consistent with the geometrical assumptions of the prim-
itive equations (Section 3.1), it is appropriate to use a gravitational acceleration as
determined by a mean over the ocean surface. As reported on page 132 of Moritz
(2000), the gravitational acceleration at the earth’s surface as a function of latitude
is given by

ge = 9.780327 [1 + 0.0053024 sin2φ− 0.0000058 (sin 2φ)2]. (3.84)

At a latitude of 45◦, ge = 9.806m s−2, which is the value used by ocean models
based on Cox (1984). The areal average over the earth’s surface is 9.7976 m s−2 as
reported on page 597 of Gill (1982). Based on a suggestion by Trevor McDougall and
David Jackett (2002, personal communication), it may be more appropriate to take
an areal average over the ocean surface, which yields g = 9.7963 m s−2 as given
by equation (3.83). It is likely that the sensitivity of large-scale ocean circulation to
which of these three values is used will be negligible.

3.5.2.5 Coriolis acceleration

Besides the centrifugal acceleration, motion in a rotating frame introduces the Cori-
olis acceleration

ac = −2Ω ∧ v. (3.85)

The Coriolis acceleration plays a crucial role in the fluid motion on the earth. No-
tably, it is a function of the velocity, and is directed perpendicular to the velocity
direction and so does not perform work on the fluid parcel. In this way, the Coriolis
force

Fc = −2 (ρ dV)Ω ∧ v (3.86)

acting on a fluid parcel is akin to the Lorentz force acting on a charged particle in
an electromagnetic field (e.g., Jackson (1975) as well as Section 3.9).

As discussed in Section 3.1, the Traditional Approximation sets the metric tensor
components equal to their values at the earth’s surface r = R. This assumption
has an influence on the corresponding angular momentum that is associated with
the motion in this geometry. Namely, the angular momentum about the earth’s
center is computed with a moment-arm that has a fixed radius r = R. Hence,
motion in the radial/vertical direction does not alter angular momentum within the
Traditional Approximation. Correspondingly, for self-consistency, we must drop
the non-radial component of the earth’s angular rotation vector when computing
the Coriolis force, since this component alters angular momentum when moving



62 CHAPTER 3. OCEAN HYDRODYNAMICS

in the vertical direction. Thus, within the Traditional Approximation, the Coriolis
force is given by

Fc = − f (ρ dV) ẑ ∧ v (3.87)

In generalized horizontal coordinates, the Coriolis parameter

f = 2Ω sinφ (3.88)

is generally a function of the horizontal coordinates ξ1,ξ2 since

φ = φ(ξ1,ξ2). (3.89)

3.5.3 Internal forces

As discussed in Section 3.4.2, there are two internal forces of interest when formu-
lating the equations for an ocean model: pressure and friction.

The force due to pressure acting on the boundaries of a fluid parcel is given by
the volume of the parcel times the gradient of pressure

Fp = −dV∇p. (3.90)

When parcels exchange momentum with other parcels and/or boundaries, we
can represent this exchance via the components to a stress tensor, whose covariant
divergence leads to a force. The forces arise from molecular viscosity, and can gen-
erally be expressed as the divergence of a symmetric stress tensor. However, when
averaging over turbulent realizations of the ocean fluid, sub-grid-scale transfers of
momentum can be far larger than those associated with molecular viscosity. More
discussion of this point is postponed until Chapter 6 when presenting the ensemble
averaged equations. Further details of friction used in ocean models are given in
Chapters 15–17. For now, the physical friction components are written

(ρ dV) F(v) = (ρ dV) (F(u), F(v), F(w)). (3.91)

3.5.4 Evolution of linear momentum density

Setting the time tendency of a fluid parcel’s linear momentum equal to the forces
acting on the parcel yields the equations of motion

dV [(ρ v),t +∇ · (ρ v v) +M (ẑ ∧ ρ v)]

= dV [−ρ g ẑ− f ρ ẑ ∧ v−∇p + ρ F(v)]. (3.92)

Dividing by the parcel’s volume leads to the time tendency for the linear momen-
tum density

(ρ v),t +∇ · (ρ v v) +M (ẑ ∧ ρ v)

= −ρ g ẑ− f ẑ ∧ ρ v−∇p + ρ F(v). (3.93)

This equation forms the basis for averaging the equations of motion over an en-
semble of realizations (Chapter 6) as well as for discretizing the dynamics (Chapter
10).
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3.5.5 Vector invariant velocity equation

Another form of the equation describing fluid parcel dynamics appears in many
contexts, such as when deriving the vorticity equation discussed in Section 3.7. It
also serves as an alternative starting point for numerical discretization. This equa-
tion goes by the name vector invariant velocity equation since it is written in a co-
ordinate invariant form. Notably, the advection frequency M in equation (3.93)
vanishes for some coordinate choices, thus indicating the non-tensorial character of
this object (see Section 3.5.1). In contrast, all terms in the vector invariant velocity
equation remain in tact regardless the coordinates.

To derive the vector invariant velocity equation, return to the derivation in Sec-
tion 3.5.1. Instead of focusing in the linear momentum density, consider a parcel’s
velocity, whose time tendency is given by

dva

dt
= va

,t + vb va
;b (3.94)

where again va is a tensorial component of the velocity field and all tensor labels
run over the spatial range 1, 2, 3. The nonlinear advection term can be written

vb va
;b = vb gac vc;b

= vb gac (vc;b − vb;c) + vb gac vb;c
(3.95)

where we used the metricity condition gac
;b = 0 (Section 19.2.4). The second term in

equation (3.95) can be written as the covariant derivative of the kinetic energy per
mass

gac vb vb ;c = (gac/2) (vb vb);c

= (gac/2) (vb vb),c
(3.96)

where the last step noted that the covariant derivative of a scalar equals to its partial
derivative (equation (19.11)). Use of expression (19.14) for the covariant derivative
of a one-form component leads to the first term taking the form

vb gac (vc;b − vb;c) = vb gac (vc,b − Γ
p
cb vp − vb,c + Γ

p
bc vp)

= gac vb (vc,b − vb,c)
(3.97)

where the last step used the symmetry property Γ p
bc = Γ

p
cb of the Christoffel sym-

bols (Section 19.4). The anti-symmetric term vc,b − vb,c is reminiscient of vorticity.
Indeed, introducing the covariant curl given in Section 19.8 leads to

(~ω ∧~v)a = (curl~v ∧~v)a

= εabc (curl~v)b vc

= εabc ε
bpq vq,p vc

= (δp
c δ

q
a − δ

p
a δ

q
c ) vq,p vc

= vc (va,c − vc,a)

(3.98)

where we used properties of the covariant Levi-Civita symbol εabc defined in Sec-
tion 18.12, and ~v = (v1, v2, v3) form the three tensor components of the velocity.
This result then renders

dva

dt
= va

,t + (gac/2) (vb vb),c + gac (~ω ∧~v)c. (3.99)
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As in Section 3.5.1, we specialize the result (3.99) to the locally orthogonal co-
ordinates commonly used in ocean models, in which case the metric tensor com-
ponents can be written gab = ha hb δab with no implied summation. Assuming a
time independent metric, it is straightforward to derive an expression for the time
tendency of a physical velocity component for a parcel

dv(a)

dt
= v(a)

,t + (1/2) (v · v),(a) + (ω ∧ v)(a) (3.100)

where again the physical components of the velocity are given by v(a) = ha va with
no implied summation, a boldface symbol characterizes the physical components
to a vector such as the velocity v = (v(1), v(2), v(3)), and the covariant Levi-Civita
symbol εabc is given by εabc = h1 h2 h3εabc, with εabc the flat-space Levi-Civita sym-
bol (Section 18.12).

The expression (3.100) is more compactly written as

ρ
dv
dt

= ρ (∂t +ω∧ ) v + (ρ/2)∇(v · v). (3.101)

Hence, bringing together all the forces acting on a fluid parcel leads to the vector-
invariant form of the velocity equation

[∂t + (ω+ f )∧ ] v = ∇[Φ− v · v/2]− ρ−1∇p + F(v), (3.102)

where g = −∇Φ = g ẑ is the gravitational acceleration (Section 3.5.2.3). Compari-
son of this equation with that for the linear momentum density (3.93) highlights the
different treatment of nonlinear transport. The vector invariant velocity equation
(3.102) exposes vorticity and kinetic energy per mass, whereas the linear momen-
tum equation (3.93) focuses on nonlinear self-advection along with the coordinate
dependent advection metric.

As stated earlier, the vector invariant velocity equation is useful for certain the-
oretical developments, such as deriving the vorticity equation. Additionally, some
modelers use it as their starting point for numerical discretization, with those build-
ing Boussinesq C-grid models generally prefering this approach (see Griffies et al.
(2000a) for a summary). However, in Chapter 6 we prefer the linear momentum
equation (3.93) as the starting point for obtaining the ensemble averaged dynami-
cal equations, as such renders a straightforward discretization of a non-Boussinesq
fluid in z-models following the methods of McDougall et al. (2002a) and Greatbatch
and McDougall (2002).

3.6 Hydrostatic pressure

We discuss here the hydrostatic balance, which is a balance maintained for the fluid
discretized by most global ocean models.

3.6.1 Hydrostatic balance

A fluid in static equilibrium maintains a balance between the vertical pressure gra-
dient and buoyancy force

p,z = −ρ g. (3.103)
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This equation is known as the hydrostatic balance. Scaling analysis (e.g., Gill (1982))
shows that the hydrostatic balance remains the dominant balance within the verti-
cal momentum equation so long as the vertical scales of motion are much smaller
than the horizontal. As such scales are relevant for large-scale ocean climate mod-
eling, global ocean models typically assume a hydrostatic balance. Integrating the
hydrostatic balance vertically from the ocean surface determines the pressure at a
point in the ocean

p(z) = pa + g
η
∫

z

dz′ ρ, (3.104)

where pa is the atmospheric pressure at the sea surface.

3.6.2 Bottom pressure

As mentioned in Section 2.4.3, satellite missions may soon be able to provide very
precise and accurate measurements of the ocean bottom pressure. Assuming hy-
drostatic balance in a constant gravitational field, bottom pressure is a function of
the density within the overlying vertical fluid column, the thickness of the column,
and the atmospheric pressure. Hence, there are two reasons that the bottom pres-
sure differs for a Boussinesq and non-Boussinesq fluid: (1) differences in sea level,
(2) differences in density within the column.

To further understand these differences, let us start with two fluid columns of
equal depth and equal density, thus producing equal bottom pressures

pbot = g
η
∫

−H

dzρ. (3.105)

Let one column be filled with a volume conserving fluid, and the other with a mass
conserving fluid. We consider the different evolutions of bottom pressure for these
two columns in the case when atmospheric effects are ignored.

The time tendency for bottom pressure in the mass conserving fluid is given by

∂t pbot = g ∂t





η
∫

−H

dzρ





= g (−ρo∇ · Ũ + ρw qw),

(3.106)

where the second equality follows from the mass balance (3.37). This equation says
that bottom pressure changes according to changes in the mass per unit area of fluid
within the vertical column. In particular, for a mass conserving fluid at rest with
zero currents, uniform heating of the fluid, which maintains the fluid at rest, does
not change the bottom pressure since the mass of fluid in the column remains the
same, only the thickness of the column changes. Integration of the bottom pressure
tendency over the full ocean bottom area leaves only a contribution from surface
mass fluxes, regardless the buoyancy fluxes within the ocean interior. This result
makes sense because bottom pressure integrated over the full area of ocean bottom
represents the total gravitational force applied to the ocean bottom from the mass
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of fluid. With a constant gravitational acceleration, this force changes in time only
when the ocean fluid mass changes.

Now consider the same issues for a volume conserving fluid, in which case the
time tendency of bottom pressure is

∂t pbot = g



ρ(η) η,t +
η
∫

−H

dzρ,t





= g



ρ(η) (−∇ ·U + qw) +
η
∫

−H

dzρ,t





(3.107)

where the volume budget (3.22) was used. Comparison to equation (3.107) for the
mass conserving fluid reveals some differences in details of the first and second
terms, plus an extra term

∫ η
−H dzρ,t associated with depth integrated density time

tendency. When uniformly heating a volume conserving fluid at rest, the extra
density tendency term leads to a reduction in bottom pressure. We can understand
this result in the following way. Recall from Section 2.4.3 that uniformly heating
a column of volume conserving fluid reduces its density while at the same time
keeping its surface height fixed in order to maintain the same volume. Therefore,
the mass within the column is reduced. Reducing the mass within the column,
without changing its thickness, leads to a reduction in bottom pressure, as revealed
by equation (3.107).

These examples illustrate some of the unphysical effects associated with the
Boussinesq fluid. Again, if we are able to precisely and accurately measure the
ocean’s bottom pressure using satellites, then comparison of this data with a nu-
merical simulation is handicapped if the model discretizes a Boussinesq fluid. In
particular, assimilation of bottom pressure data into the Boussinesq model is awk-
ward since it has a flawed bottom pressure budget.

3.7 Vorticity and potential vorticity

Vorticity is one of the most important dynamical variables in fluid mechanics, with
the associated potential vorticity scalar key to understanding and predicting as-
pects of geophysical fluid flows. We aim in this section to introduce these vorticities
by deriving their evolution equations. More complete discussions are available in
many places, with Gill (1982), Pedlosky (1987), Müller (1995), and Salmon (1998)
recommended for a geophysical fluid focus. To simplify the mathematics, we as-
sume Cartesian tensors. The resulting equations are easily translated into general
coordinates by writing them in a covariant manner as detailed in Chapter 19.

3.7.1 Vorticity evolution

We derive the vorticity equation by starting from the vector invariant form of the
velocity equation derived in Section 3.5.5, rewritten here for completeness

∂tv +ω ∧ v = ∇ (Φ− v · v/2)− (1/ρ)∇ p + F(v) (3.108)



3.7. VORTICITY AND POTENTIAL VORTICITY 67

where
ω =ω+ f (3.109)

is the absolute vorticity. Taking the curl eliminates the conservative forcing from
gravity and the kinetic energy density. To tidy-up the resulting equation, we use
the identity

[∇∧ (ω ∧ v)]p = εpqrεrst (ωs vt),q

= (δps δqt − δpt δqs) (ωs vt),q

= (ωp vq),q − (ωq vp),q

= (v · ∇)ωp +ωp∇ · v− (ω · ∇)vp

(3.110)

where, as in Section 3.5.5, we used properties of the Levi-Civita symbolεpqr defined
in Section 18.12, and we noted that the absolute vorticity has zero divergence ∇ ·
ω = 0. Bringing these results together yields the material evolution of absolute
vorticity

dω
dt

= −ω (∇ · v) + (ω · ∇) v

+ ρ−2 (∇ρ ∧∇p) +∇∧ F(v). (3.111)

The discussion in Chapter 2 of Pedlosky (1987) is recommended for interpreting the
forcing terms on the right hand side.

3.7.2 Potential vorticity evolution

Now introduce a scalar function that is materially conserved dψ/dt = 0, and con-
sider evolution of vorticity projected onto a direction normal to surfaces of constant
ψ. For this purpose, we note that

dψ,a

dt
= −v,a · ∇ψ (3.112)

which leads to

∇ψ · dω
dt

=
d (∇ψ ·ω)

dt
+∇ψ · (ω · ∇)v. (3.113)

More than an arbitrary conserved scalar, we are interested in those satisfying ∇ψ ·
(∇ρ∧∇p) = 0. That is, where the baroclinicity vector∇ρ∧∇p is parallel to surfaces
of constant ψ. This is the case for functions ψ = ψ(ρ, p) where ∇ψ = ψ,ρ∇ρ +
ψ,p∇p. For such scalars, the vorticity equation leads to

d (∇ψ ·ω)
dt

= −∇ψ ·ω (∇ · v) +∇ψ · ∇ ∧ F(v). (3.114)

Mass conservation (∂t + v · ∇)ρ = −ρ∇ · v allows us to eliminate the divergence
∇ · v to render

dP
dt

= ρ−1∇ψ · ∇ ∧ F(v) (3.115)

where
P = ρ−1ω · ∇ψ (3.116)
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is the potential vorticity. As defined, ρP is the projection of the absolute vorticity
onto the direction normal to surfaces of constantψ. Equation (3.116) thus says that
inviscid fluid motion materially conserves the potential vorticity P . This is an espe-
cially important and useful conservation property of ideal oceanic fluid dynamics.

In closing this subsection, we note that the density weighted potential vorticity
ρP can be written as a total divergence

ρP = ∇ · (ωψ) (3.117)

since ∇ ·ω = 0. Haynes and McIntyre (1987, 1990) show that this form of ρP im-
plies that for general fluid flow, even nonideal and diabatic flow, potential vorticity
sources are present only at domain boundaries. This result distinguishes potential
vorticity from other tracers whose sources can generally be anywhere in the fluid.

3.7.3 Hydrostatic-Boussinesq potential vorticity

Potential vorticity conservation is maintained for many approximate fluid flows
with a corresponding potential vorticity variable. To illustrate such, let us derive
the potential vorticity equation appropriate for an adiabatic, inviscid, Boussinesq,
hydrostatic fluid. Many of the following steps have their analog in the more general
discussion above, yet they are presented here for pedagogical purposes.

The dynamical and thermodynamical equations satisfied by the fluid are

ρo (d/dt + f ẑ∧ ) u = −∇z p (3.118)
p,z = −gρ (3.119)

∇ · v = 0 (3.120)
dρ
dt

= 0, (3.121)

where u = (u, v, 0) is the horizontal velocity, ∇z = (∂x, ∂y, 0) is the horizontal
gradient, equation (3.119) is the hydrostatic balance, ρo is the constant Boussinesq
reference density, and equation (3.121) expresses the conservation of potential den-
sity for the adiabatic fluid. Note that we equate potential density with in situ den-
sity, thus allowing the same symbol to be used in the hydrostatic equation as the
potential density equation.

The vector invariant form of the velocity equation is derived by noting that the
advection of horizontal momentum can be written

(v · ∇) u = (1/2)∇z (u · u) +ζ ẑ ∧ u + w ∂z u (3.122)

which leads to

(∂t + w ∂z +ζ ẑ∧ ) u = −∇z (u · u/2 + p/ρo), (3.123)

where

ζ = ζ + f
= ẑ · ∇ ∧ v + f

(3.124)
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is the vertical component of the absolute vorticity. Operating on equation (3.123)
with ẑ · ∇∧ leads to the material evolution

dζ
dt

= w,z ζ + w,y u,z − w,x v,z. (3.125)

This equation can be put in a more concise form by noting that the non-hydrostatic
relative vorticity

ω = x̂ (w,y − v,z) + ŷ (u,z − w,x) + ẑ (v,x − u,y) (3.126)

becomes
ω = −x̂ v,z + ŷ u,z + ẑ (v,x − u,y) (3.127)

upon moving to the hydrostatic primitive equations as dictated by the Traditional
Approximation (Section 3.2). In this case, we have

dζ
dt

= (ω · ∇) w, (3.128)

which can be deduced from the general vorticity equation (3.111) by making the
Boussinesq and Traditional approximations.

For an adiabatic Boussinesq fluid, potential density is a conserved scalar whose
gradient we project onto the absolute vorticity to define potential vorticity. Hence,
we are led to consider

ρo P =ω · ∇ρ (3.129)

with the relative vorticity given by the hydrostatic form (3.127) and the ρ−1 factor
present in the potential vorticity (3.116) reduced to ρ−1

o for the Boussinesq fluid. As
defined, P is proportional to the projection of the absolute vorticity onto the three-
dimensional potential density stratification, and its units are those of vorticity.

To verify that P given by equation (3.129) is materially conserved by the ideal
flow, we proceed in a direct manner. That is, we write

ρo P = f ρ,z + (v,x ρ,z − v,z ρ,x) + (u,z ρ,y − u,y ρ,z) (3.130)

and compute the material evolution of each term on the right hand side. We note
here some of the intermediate steps necessary for this calculation

d
dt

( f ρ,z) = vβρ,z − v,z · ∇ρ

d
dt

(v,x ρ,z) = ρ,z (− f u,x − p,xy/ρo − v,x · ∇v)− v,x v,z · ∇ρ

d
dt

(v,z ρ,x) = ρ,x (− f u,z + gρ,y/ρo − v,z · ∇v)− v,z v,x · ∇ρ

d
dt

(u,z ρ,y) = ρ,y ( f v,z + gρ,x/ρo − v,z · ∇u)− u,z v,y · ∇ρ

d
dt

(u,y ρ,z) = ρ,z (β v + f v,y − p,xy/ρo − v,y · ∇u)− u,y v,z · ∇ρ

where β = f,y is the planetary vorticity gradient. Expansion of these terms reveals
that indeed dP/dt = 0.
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3.7.4 Planetary geostrophic potential vorticity

To finish this brief excursion into potential vorticity, we consider potential vorticity
for the inviscid planetary geostrophic equations

f ẑ ∧ u = −∇z p/ρo (3.131)
p,z = −gρ (3.132)

∇ · v = 0 (3.133)
dρ
dt

= 0. (3.134)

The momentum equation is a statement of geostrophic balance between the Coriolis
force and pressure force. It neglects relative vorticity and the material evolution of
velocity. Geostrophy is the dominant balance for steady, large-scale, mid-latitude,
open ocean circulations. Notably, it represents a diagnostic relation, and so can-
not be used to predict future evolution of the velocity field. The remaining equa-
tions are the same as considered in the ideal hydrostatic Boussinesq system in Sec-
tion 3.7.3. The equations of planetary geostrophy have been studied extensively
in oceanography, especially when considering thermocline theory (e.g., Pedlosky
(1987)).

Potential vorticity for the planetary geostrophic system is given by the planetary
vorticity times the vertical stratification

ρoP = f ρ,z

= −( f ρo/g) N2 (3.135)

with N2 = −(g/ρo)ρ,z the buoyancy frequency. That is, we neglect all contribu-
tions to the hydrostatic Boussinesq potential vorticity ρo P =ω · ∇ρ that arise from
relative vorticity, and so we are left with just the contribution from the Coriolis term
ẑ f · ∇ρ = f ρ,z.

Proof that P is materially conserved is straightforward, and we expose here the
main steps. First, note that

ρo
dP
dt

= β vρ,z − f u,z · ∇ρ− f w,z ρ,z (3.136)

where we used dρ/dt = 0 and f,y = β defines the meridional gradient of the
planetary vorticity. Next take the vertical derivative of the geostrophic balance to
derive the thermal wind equations

f u,z = (g/ρo) ẑ ∧∇ρ. (3.137)

Consequently, the vertical shear of the geostrophic velocity u,z is orthogonal to the
horizontal density gradient

u,z · ∇ρ = (g/ f ρo) (ẑ ∧∇ρ) · ∇ρ
= 0.

(3.138)

Now use the continuity equation to replace w,z with the horizontal convergence
w,z = −∇ · u, and use geostrophy to relate this convergence to the meridional
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advection of planetary vorticity

∇ · ( f u) = β v + f ∇ · u
= 0.

(3.139)

This result substituted into equation (3.136) leads to the desired conservation law
dP/dt = 0.

3.8 Dynamics of fluid columns

In Section 3.3, we considered the kinematics of infinitesimal fluid parcels as well
as finite domains of fluid, including columns of ocean fluid. We now consider the
dynamics of a column of hydrostatically balanced ocean fluid extending from the
bottom to the free surface. To derive the dynamical equations for a fluid column,
we vertically integrate the equations for a fluid parcel over the full ocean depth.

The dynamics of fluid columns is represented by equations in two-spatial di-
mensions, instead of the three dimensions available for parcels. The two dimen-
sional vertically integrated dynamics, when combined with two dimensional fluid
column kinematics, approximates the dynamics of the external or barotropic mode
of the linear primitive equations. The external mode, rigorously defined only for
a flat bottom ocean, represents the zeroth eigenmode of an infinite number of ver-
tical modes possessed by the linearized primitive equations (e.g., Gill (1982) and
Killworth et al. (1991)). The external mode is nearly two-dimensional, yet for a free
surface ocean it has a small vertical dependence, thus breaking the exact analogy
with the vertically integrated dynamics.

For the World Ocean, the speed of external mode disturbances is roughly 100
times faster than the speed of the next fastest disturbances. These external mode
gravity waves propogate such physical effects as tidal fluctuations and tsunami’s. To
explicitly resolve such waves in the full three-dimensional numerical model would
place a severe restriction on the efficiency of the model, since the model’s time step
would need to be small enough to resolve the fast waves. Hence, there are various
methods to extract or split the fast external mode dynamics from the slower, baro-
clinic or internal mode dynamics. Over the years, ocean climate modelers have im-
plemented a handfull of methods. The split-explicit free surface method is presently
quite popular, and details of a particular implementation are discussed in Chapter
10.

3.8.1 An approximate hydrostatic pressure

Recall that the hydrostatic pressure is given by equation (3.104): p(z) = pa +
g
∫ η

z dz′ ρ. Fluctuations in this pressure are associated with fluctuations in the atmo-
spheric pressure, the ocean surface height, and the ocean density. Fluctuations in
the surface height generally occur on the faster external mode time scale, whereas
fluctuations in density generally occur on the slower internal mode time scale. Be-
cause we aim to incorporate the fast dynamics into the vertically integrated mode, it
is useful to separate these two contributions to the pressure field prior to vertically
integrating the equations of motion.
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For this purpose, we write

η
∫

z

ρ dz′ =
0
∫

z

ρ dz′ +
η
∫

0

ρ dz′. (3.140)

For ocean climate modeling, to within a very good approximation, the fluid be-
tween z = 0 and z = η is well mixed, which is expected due to air-sea interactions.
It is therefore appropriate to set

η
∫

0

ρ dz ≈ ηρ(z = 0). (3.141)

Doing so then brings the hydrostatic pressure to the form

p = pa + ps + p(b), (3.142)

where

p(b) = g
0
∫

z

ρ dz (3.143)

is known as the baroclinic or internal pressure field, and

ps = g ηρ(z = 0) (3.144)

is known as the surface pressure field. Figure 3.7 illustrates this partitioning of the
pressure field.

The baroclinic pressure is the hydrostatic pressure associated with density in
the vertical column between some depth z and a resting ocean surface z = 0. In
turn, the horizontal gradient of this field, ∇p(b) = g

∫ 0
z ∇ρ dz′, arises from baro-

clinic effects (i.e., horizontal density gradients) in that part of the ocean between the
resting ocean surface and the depth z.

Care should be taken to distinguish the surface pressure ps, which is the pres-
sure due to ocean fluid between z = 0 and z = η, with the atmospheric pressure
pa, which is the pressure felt at the ocean surface z = η. Both the atmospheric
and surface pressures are independent of depth, whereas the baroclinic pressure is
depth dependent. Notably, when η < 0, the surface pressure is negative. Many
Boussinesq models approximate the surface pressure with ps ≈ g ηρo, where ρo is
the constant Boussinesq density. This approximation only saves a small amount
of computer time, and does not simplify the equations in a fundamental manner.
Hence, even when making the Boussinesq approximation, modelers may choose to
maintain the more accurate hydrostatic result ps = g ηρ(z = 0) (e.g., Griffies et al.
(2001)).

3.8.2 Vertically integrated momentum

Vertically integrating the momentum equation given in Section 3.8.1, and using the
surface and bottom kinematic boundary conditions (Section 3.3) leads to

(∂t + f ẑ∧ ) Ũ = −∇ (pa + ps)/ρo + G, (3.145)
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Ps

Pa

Pb
z

z=0

Figure 3.7: Illustrating the partitioning of the hydrostatic pressure given by equa-
tion (3.142). The pressure at a depth z is given by the sum of (1) the baroclinic
pressure p(b), which is the pressure associated with the density between the depth
z and the resting ocean surface z = 0, (2) the surface pressure ps, which is the pres-
sure associated with the vertically uniform ocean density between the resting ocean
surface z = 0 and the free surface z = η, (3) the atmospheric pressure pa.

where

G = u(η)ρw qw +
η
∫

−H

dz [−∇ (p(b)/ρo)

− (∇ · (ρ v u) +M ẑ ∧ ρ u) + ρ Fv]. (3.146)

With the nonlinear term G = 0, the equations describe the dynamics of linear shal-
low water inertia-gravity waves (Gill (1982)). The nonlinear forcing imparted by
G 6= 0 couples the vertically integrated dynamics to the depth dependent dynam-
ics.

We have much more to say about the vertically integrated dynamics when dis-
cussing solution methods in Chapter 10.

3.9 Particle dynamics

The purpose of this section is to help highlight some dynamical issues related the
Traditional Approximation (Section 3.1). Namely, what is the form for the energy
and angular momentum of a fluid parcel moving in the geometry defined by the
Traditional Approximation? Both of these questions can be addressed with manip-
ulations of the primitive equations derived in the previous sections. However, we
find it interesting to provide a complementary discussion that is not commonly pre-
sented in the geophysical fluids literature. Note that the content in this section lies
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somewhat outside the main focus of this chapter, and so it may easily be skipped
without loss of continuity.

In this section, we deviate from our focus on continuum fluid parcel mechanics,
and instead consider dynamics of a point particle freely moving around a rotating
massive sphere. As mentioned in Section 3.5, a Lagrangian perspective on fluid
parcel mechanics shares much in common with point particle mechanics. Hence,
many of the results for the point particle apply to the fluid parcel. However, the
fundamental distinction, as pointed out in Section 3.4.2, is that the boundary of a
continuous fluid parcel feels the effects of other parcels through internal or con-
tact forces such as pressure and friction. Correspondingly, a continuous fluid has
internal energy, whereas a point particle does not.

To study the point particle motion, we employ Hamilton’s Principle instead of
Newton’s Second Law. Hamilton’s Principle leads to the same dynamical equa-
tions as Newton’s Second Law, yet it formulates the dynamics from Hamilton’s
variational principle of least action. The action principle serves our purpose since it
readily highlights conservation laws and their connection to geometric symmetries.
These issues are well known from analytical mechanics (e.g., Fetter and Walecka
(1980) and Marion and Thornton (1988)) and have their direct analog in fluid dy-
namics (Salmon (1988), Salmon (1998), Müller (1995)). In the following, we assume
some experience with these issues, at least in so far as they arise in particle mechan-
ics.

3.9.1 A fluid parcel and a point particle

Newton’s Law was applied in Section 3.5, which led to the following equation of
motion for a fluid parcel

(ρ dV)
(

d
dt

+ f ẑ∧
)

v

= −g (ρ dV) ẑ− dV∇p + (ρ dV) F(v). (3.147)

If we now consider a point particle of mass ρ dV moving around the rotating sphere,
it obeys the same equation of motion, yet with the following differences: (1) inter-
nal forces (i.e., pressure and friction) are absent since these forces arise from the
finite extent of the fluid parcel, (2) the mass times acceleration (ρ dV) dv/dt be-
comes m v̇ = m ẍ for the particle, where the dot represents a time derivative with
time measured within the frame of the moving particle. Hence, the point particle
satisfies

(ρ dV)
(

d
dt

+ f ẑ∧
)

ẋ = −g (ρ dV) ẑ. (3.148)

In the following, we derive this equation from alternative methods for the purpose
of clarifying how the Traditional Approximation affects the energy and angular
momentum of the particle.

3.9.2 Lagrangian function

To derive the dynamical equations using Hamilton’s Principle, we require expres-
sions for the kinetic and potential energy of the particle. The gravitational potential
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energy has been discussed in Section 3.5.2.3. We focus here on the kinetic energy
and thus derive the particle’s Lagrangian function.

If the particle is at a fixed position with respect to the rotating reference frame,
it is experiencing a constant solid body rotation represented by the velocity

U = Ω ∧ x (3.149)

whereΩ is the angular velocity for the sphere, and x is the Cartesian position vector
of the particle with respect to the earth’s center (see Figure 3.1 for a definition of the
Cartesian coordinates). Allowing the particle to move with respect to the rotating
sphere yields the particle’s inertial velocity

ẋinertial = ẋ + U, (3.150)

where ẋ is the particle’s velocity as measured in the rotating reference frame. Cor-
respondingly, the particle’s inertial kinetic energy is given by

K = (m/2) (ẋ + U)2, (3.151)

which leads to the Lagrangian function (difference of kinetic and potential energies)

L = K−Φ
= (m/2) (ẋ + U)2 −m ge r.

(3.152)

Use of the spherical coordinates defined in Figure 3.1 leads to the solid body veloc-
ity

U = Ω r cosφ (− sin λ, cos λ, 0), (3.153)

the velocity measured in the rotating frame

ẋ =
d
dt

(x, y, z)

=
d
dt

(r cosφ cos λ, r cosφ sin λ, r sinφ),
(3.154)

and the kinetic energy

K = (m/2)
[

(ṙ2 + r2φ̇2

+ r2 cos2φ λ̇2) + (Ω2 r2 cos2φ) +(2Ω r2λ̇ cos2φ)
]

. (3.155)

3.9.3 Hamiltonian dynamics

The Hamiltonian function for the particle is generally given by

H = Π · ẋ− L, (3.156)

where
Π =

∂L
∂ẋ

(3.157)



76 CHAPTER 3. OCEAN HYDRODYNAMICS

is the canonical momentum. For the point particle in the rotating reference frame

Π = m (ẋ + U), (3.158)

thus leading to the Hamiltonian

H = m (ẋ + U) · ẋ− (m/2) (ẋ + U)2 + m ge r

= (m/2) ẋ2 + m r (ge −U2/(2r)).
(3.159)

Hence, the Hamiltonian is the sum of the kinetic energy of the particle as measured
in the rotating reference frame, plus an effective gravitational potential energy aris-
ing from the earth’s gravitational attraction and the centrifugal force

Φe f f = m r [ge −U2/(2r)]. (3.160)

The gradient ofΦe f f defines the local vertical direction ẑ pointing away from geopo-
tential surfaces (Section 3.5.2.3).

Because the physical system exhibits symmetry with respect to constant trans-
lations in time τ → τ + δτ , general principles of analytic mechanics show that the
Hamiltonian remains unchanged during the particle’s motion. Additionally, the
physical system remains invariant under rotations about the north-pole. This sym-
metry leads to yet another conserved quantity, the angular momentum, as shown
in Section 3.9.4.

To employ the formalism of Hamiltonian dynamics for deriving the equations
of motion, it is necessary to write the Hamiltonian function in terms of the canonical
momentum

H =
(Π−m U)2

2 m
+Φe f f . (3.161)

This form for the Hamiltonian suggests an interpretation of the physical system
motivated by its analog to a charged particle moving in an electromagnetic field
(e.g., Section 33 of Fetter and Walecka (1980)). Both systems have the same math-
ematical form for the kinetic energy, where U is the analog of the electromagnetic
vector potential and ∇∧U is the analog of the magnetic field. Recall that this cor-
respondence is to be expected since the Coriolis force is mathematically analogous
to the Lorentz force acting on a moving charged particle (Section 3.5.2). It suggests
an interpretation of the particle moving around the rotating sphere as a particle
moving within the field associated with the solid body velocity U as well as the
gravitational field.

Hamilton’s canonical equations of motion are given by

∂H
∂Π

= ẋ (3.162)

∂H
∂x

= −Π̇. (3.163)

For the particle, the first equation leads to an identity

∂H
∂Π

= (1/m) (Π−m U) = ẋ, (3.164)
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whereas the second equation leads to

∂H
∂xa = −m ẋ · ∂U

∂xa +
∂Φe f f

∂xa

= −Π̇a.
(3.165)

Taking the time derivative of equation (3.164) and substituting equation (3.165)
leads to the second order equation of motion

m ẍ = m ẋ ∧ (∇ ∧ U)−∇Φe f f . (3.166)

To reach this equation, we noted that the time derivative of the rotating frame’s
velocity is required from the frame of the moving particle. Hence, it is given by the
total derivative

U̇ = (∂t + ẋ · ∇) U, (3.167)

where ∂tU = 0 since the sphere is rotating at a constant rate. Standard vector
identities lead to

∇ ∧ U = 2Ω, (3.168)

where we assumed Ω is spatially constant. Thus, the equation of motion takes the
form

m
(

d
dt

+ 2Ω∧
)

ẋ = −∇Φe f f , (3.169)

as expected from our derivation of equation (3.148).

3.9.4 Conservation laws

We reflect the system’s spatial symmetry by choosing spherical coordinates, in
which case the Lagrangian L takes the form

L +Φe f f

= (m/2)
[

(ṙ2 + r2φ̇2 + r2 cos2φ λ̇2) + (2Ω r2λ̇ cos2φ)
]

, (3.170)

with
Φe f f = m ge r− (m/2) (Ω r cosφ)2. (3.171)

Closer connection to the fluid case is realized by introducing the velocity vector’s
physical components

(u, v, w) = ((r cosφ) λ̇, r φ̇, ṙ), (3.172)

which leads to

L = (m/2)(u2 + v2 + w2 + 2Ω u r cosφ)−Φe f f . (3.173)

Spherical components to the canonical momentum

Π = (Πr,Πλ ,Πφ)

=
(

δL
δṙ

,
δL
δλ̇

,
δL
δφ̇

) (3.174)
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are given by

Πr = mṙ (3.175)

Πλ = m (r cosφ)2 (λ̇+Ω) (3.176)

Πφ = m r2 φ̇, (3.177)

which can be brought into a more familiar form by introducing the velocity com-
ponents (u, v, w)

Πr = m w (3.178)
Πλ = m (r cosφ) (u +Ω r cosφ) (3.179)
Πφ = m r v. (3.180)

Note the different physical dimensions of the momentum components, reflecting
the different dimensions of the spherical coordinates (r, λ,φ).

The zonal canonical momenta Πλ represents the angular momentum of the par-
ticle about the rotation axis extending from the south to north poles of the sphere,
with r cosφ the distance to the rotation axis, and u +Ω r cosφ the particle’s total
zonal velocity. Because the Lagrangian is independent of the zonal angle λ, reflect-
ing the system’s symmetry about the north-pole, Πλ is a constant of the motion

dΠλ
dt

= 0. (3.181)

The corresponding Hamiltonian takes the form

H = (m/2) (ṙ2 + r2λ̇2 cos2φ+ r2φ̇2) +Φe f f

= (m/2) (u2 + v2 + w2) +Φe f f

=
Π2

r
2 m

+
[Πλ −mΩ (r cosφ)2]2

2 m (r cosφ)2 +
Π2
φ

2 m r2 +Φe f f ,

(3.182)

which is also conserved because of time translation symmetry

d H
dt

= 0. (3.183)

Following the notions summarized in Salmon (1998), approximations made within
the Hamiltonian enable one to directly track the approximations’ effects on conser-
vation laws. For that reason, we choose to make the Traditional Approximation for
the particle’s motion by dropping the radial component to the canonical momen-
tum, which then leads to the Hamiltonian

Htrad = (m/2) (u2 + v2) +Φe f f . (3.184)

Again, this approximation is based on noting that for large-scale geophysical fluid
motion, the kinetic energy is dominated by the horizontal motions. This Hamilto-
nian can be used to generate the dynamical equations for the particle moving in the
Traditional Approximation geometry. In particular, by dropping the radial canon-
ical momenta component, we reduce the conserved angular momentum Πλ to the
following form

Πtrad
λ = m (R cosφ) (u +Ω R cosφ). (3.185)
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Thus establishes the form of the conserved energy and angular momentum for
the Traditional Approximated point particle. As noted in Section 3.10, the corre-
sponding results for the fluid parcel are modified by noting that the conservation
laws apply (1) over the extent of the finite fluid domain, (2) only in the absence
of friction, (3) and angular momentum is conserved in the absence of zonal bound-
aries which break the zonal symmetry. It is because of zonal boundaries introduced
by land/sea boundaries that angular momentum is not commonly discussed in
ocean modeling. However, it does play a key role in meteorology (e.g., Holton
(1992)).

3.10 Symmetry and conservation laws

When discretizing physical processes, it is desirable to formulate these processes
in terms of the finite difference of a flux across the faces of a grid cell. For this
purpose, the spatial derivative terms in the continuous equations should be in the
form of a divergence of a flux. However, when considering motion on a sphere, the
presence of the advective metric term in the budget for linear momentum (Section
3.5.1) precludes such. Additionally, as seen in Section 17.4, horizontal friction acting
on linear momentum on the sphere cannot be fully written as the divergence of a
flux across grid cells. The purpose of this section is to describe the physical and
geometric reasons for this form of the linear momentum equation.

3.10.1 Motion on an infinite plane

To get started, consider fluid motion on an infinite flat plane. In the absence of exter-
nal forces that act to make a particular horizontal direction special, the environment
maintains translational symmetry in either of the horizontal directions. Hence, the
total horizontal momentum in either direction is conserved. Mathematically, this
result means that the linear momentum of a fluid parcel satisfies a conservation
equation. That is, the forces affecting the time tendency of this momentum are rep-
resented as a total divergence. These statements take their mathematical form as
the time tendency for the momentum density

(ρ um),t = (Tmn − ρ um un),n + ρ f m (3.186)

where the tensor labels extend over the horizontal directions, we use Cartesian co-
ordinates x, y for convenience, and the conservation of mass was used in the form

ρ,t + (ρ un),n = 0. (3.187)

Additionally, the stress tensor has been written

Tmn = τmn − δmn p, (3.188)

thus representing the sum of the symmetric frictional stress tensor and a diagonal
pressure stress tensor. In the absence of external forces f m, or in the case when these
forces can be derived as the divergence of a scalar, the total horizontal momentum
∫

ρ um dV is a constant in time.
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In addition to momentum in a particular direction, the discussion in Section
15.3.3 shows that so long as the stress tensor is symmetric and there is an absence
of external forces, there is an angular momentum conservation law. For motion
on the plane, this conservation law arises from symmetry of the unforced motion
under rotations about the vertical axis. That is, angular momentum about the ver-
tical direction is conserved in the absence of external forces or boundary effects.
Mathematically, the conservation of angular momentum can be derived from the
momentum equation in a similar manner to that used in Section 15.3.3. For com-
pleteness, the derivation is summarized here.

The angular momentum per unit volume has components given by

ρLm = ρεmnp xn up. (3.189)

As the motion is restricted to a horizontal plane, the labels n, p are here limited
to 1, 2. Hence, m = 3 represents the angular momentum about the vertical axis.
Using the conservation of mass, the momentum equations, and symmetry of the
stress tensor, it is straightforward to determine the conservation law

(ρLm),t + (ρLm up),p = εmnp [(xn Tpq),q + xn ρ f p]. (3.190)

The first term on the right hand side takes the form of a total divergence, and the
second term represents external torques. In the absence of external torques and
boundary effects,

∫

ρLm dV is a constant in time.

3.10.2 Angular momentum about the north pole

In general, for unforced ideal motion on a manifold containing a translational sym-
metry, momentum in the direction of this symmetry is conserved. Likewise, if the
manifold contains an axis of symmetry, the angular momentum about this axis is
conserved. In either case, the form of the equation describing the evolution of the
density of the conserved quantity takes the form of a conservation law. To be more
specific, for unforced motion on a sphere, the three components of angular mo-
mentum about three independent axes of the sphere are conserved. For unforced
motion on a rotating sphere, angular momentum about the axis of rotation is con-
served. We saw such in Section 3.9 for the motion of a particle around a sphere.

For either the rotating or non-rotating sphere, linear momentum in any direc-
tion along the surface of the sphere is not conserved. The reason is that the manifold
is not flat, thus removing the translational symmetry required for linear momentum
conservation. Consequently, the time tendency of the linear momentum for a fluid
parcel on a sphere does not appear in a conservative form. This is the reason that
linear momentum evolution cannot be written in a purely conservative form for
fluid motion on a sphere.

Let us illustrate these points by recalling the spherical coordinate form of the
budget for the zonal and meridional linear momentum density (Section 3.5)

(ρ u),t +∇ · (ρ v u) + (M+ f ) (ẑ ∧ ρ u) = −∇p + ρ Fu (3.191)

with M = (u/R) tanφ the spherical coordinate advection metric term. Use of
mass conservation in the form ρ,t + ∇ · (ρ v) = 0 leads to the budget for zonal
velocity

(∂t + v · ∇) u− v (M+ f ) = −ρ−1 p,x + Fu. (3.192)
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Multiplication by the distance to the polar axis, R cosφ, yields

(∂t + v · ∇) (u R cosφ)
= −(R cosφ/ρ) p,x + v f R cosφ+ R cosφ Fu. (3.193)

Use of the identity

(∂t + v · ∇) (Ω R2 cos2φ) = − f v R cosφ (3.194)

renders

(∂t + v · ∇)[ R cosφ (u + RΩ cosφ)]

= (R cosφ) (−ρ−1 p,x + Fu). (3.195)

Alternatively, use of mass conservation gives

(ρL),t +∇ · (ρL v) = (R cosφ) (−p,x + ρ Fu) (3.196)

where
L = R cosφ (u + RΩ cosφ) (3.197)

is the angular momentum per unit mass about the north polar axis for a fluid par-
cel subject to the Traditional Approximation. With (R cosφ) p,x = p,λ and ρ Fu the
zonal friction force per volume discussed in Section 17.4, we see that

∫

(ρ dV)L =
∫

(ρ R2 cosφ dλ dφ)L is a constant for latitudes and depths where a full zonal cir-
cuit about the sphere is possible. Such geometry is common in the atmosphere, yet
holds only for the Circumpolar Current in the ocean.

3.10.3 Advective and frictional metric terms

We here provide a mathematical statement concerning the origin of the advective
and frictional metric terms. For this purpose, consider the linear momentum of a
fluid parcel moving on an arbitrary manifold. To describe such motion, we employ
the tensor analysis considered in Sections 3.5, 19.12, and Chapters 18 and 19 to write

ρ
dum

dt
= Tmn

;n + ρ f m. (3.198)

Acceleration of the parcel takes the form

ρ
dum

dt
= ρ(um

,t + un um
;n)

= (ρ um),t + (ρ um un);n

(3.199)

where conservation of mass on a curved manifold has been used ρ,t + (ρ un);n = 0.
Hence, the time tendency for the momentum density is given by

(ρ um),t = (Tmn − ρ um un);n + ρ f m. (3.200)
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This equation is written in the same form as the Cartesian equivalent (3.186), except
that now the derivatives are covariant and so contain information about the gener-
ally curved manifold. Expanding the covariant divergence using equation (15.167)
yields

(ρ um),t = (
√
G)−1 [

√
G (Tmn − ρ um un)],n

+ (Tab − ρ ua ub) Γm
ab + ρ f m. (3.201)

The Christoffel symbol Γm
np accounts for the spatial dependence of the basis vec-

tors. The Γm
ab τ

ab term is the “frictional metric term” and the ρ ua ub Γm
ab term is the

“advective metric term.”
As discussed in Section 19.10, integration of a quantity over the volume of a

finite grid cell in arbitrary coordinates means performing an integral of the form
∫

dVψ =
∫ √
G dξ1 dξ2 dξ3ψ, (3.202)

where
dV =

√
G dξ1 dξ2 dξ3 (3.203)

is the invariant volume element. For example, in spherical coordinates

dV = R2 cosφ dλ dφ dz. (3.204)

Hence, integration of the metric term over a grid cell does not lead to its being
transformed into the difference of terms across grid cells faces. The remaining terms
can be written such. For flat space using Cartesian coordinates, the metric terms
drop out, thus recovering the results discussed in Section 3.10.1.
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We combine here the hydrodynamics of Chapter 3 with equilibrium and non-
equilibrium thermodynamics, thus leading to a thermo-hydrodynamical description
of the ocean fluid.

4.1 Introduction

In chapter 3 we deduced the equations of motion for a fluid parcel moving in a strat-
ified fluid on a rotating sphere. In this chapter, we combine the mechanical equa-
tions with the notions of thermodynamics to formulate a thermo-hydrodynamical de-
scription of the ocean fluid. Along the way, we present energetics of the ocean fluid
as well as the evolution equation for material constituents of the ocean fluid, such
as salts and biological matter.

4.2 General types of ocean tracers

In our considerations of non-equilibrium thermodynamics later in this chapter, we
introduce a temperature-like scalar field that measures the heat content within a
parcel of seawater. This field evolves in a manner similar to other ocean tracers.
Therefore, it is useful to introduce the various forms of ocean tracers and to derive
their evolution equation.

There are three general types of ocean tracers: (1) tracers representing the con-
centration of material constituents in the fluid (e.g., passive tracers and salinity),
(2) tracers representing the thermodynamic properties of the fluid (e.g., entropy,
enthalpy, and temperature), (3) and tracers embodying dynamical properties of the
fluid (e.g., potential vorticity discussed in Section 3.7).

4.2.1 Material tracers

Fluid parcels generally contain material constituents that are transported as the
parcel moves through the ocean. These constituents are commonly termed tracers
since they are useful for tracing pathways of fluid transport.∗

Important passive tracers include the biological species of phytoplankton and
zooplankton, which form the base of the ocean’s food chain; radio-active isotopes
input to the ocean due to nuclear bomb testing active in the 1950’s and 1960’s; and
purposeful releases of tracers, such as sulpher hexaflouride (SF6), used to quantify
rates of mixing (Ledwell et al. (1993)). Passive here refers to the near inability of

∗A similar terminology is commonly used in medicine for probing human physiology.
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these tracers to alter ocean density. Hence, they have negligible effects on ocean
dynamics.

Salinity s is a generic term referring to the large number of ionic constituents
in seawater. The dominant ions are sodium Na+, chlorine Cl−, sulphate SO−−4 ,
and magnesium Mg++. At the common salinity of 35 parts “salt” per thousand
parts solution, Table 4.1 of Apel (1987) indicates there are roughly 19.345 grams
of chlorine ion per kilogram of water, 10.752 grams/kilogram of sodium ion, 1.295
gram/kilogram of magnesium ion, and 2.701 grams/kilogram of sulfate ion. These,
and the other trace ions, maintain a near constant ratio throughout the World Ocean,
hence allowing for the single term “salinity” to have near global validity.

Material tracers have a total mass within a fluid parcel written

dMC = (dM) C = (ρ dV) C, (4.1)

where dM = ρ dV is the total mass of the parcel of seawater, and C = dMC/dM
is the mass of tracer per mass of seawater. C is often termed the tracer concentration
or tracer mass fraction. Notably, since the seawater mass and tracer mass are both
scalar quantities, the tracer concentration is likewise a scalar field. Hence, tracers
are often called scalars in the fluid dynamics literature (see Section 18.5 for a mathe-
matical definition of scalar fields). Additionally, when the tracer concentration C is
uniform throughout the ocean, the budget for tracer mass reduces to the budget for
seawater mass. This observation, which follows from the definition of C, provides
an important compatibility constraint between mass and tracer budgets.

Conserving tracer mass within a parcel of seawater leads to the conservation
statement

d [(ρ dV) C]
dt

= (ρ dV)
dC
dt

= 0,
(4.2)

where we used mass conservation d(ρ dV)/dt = 0. Combining the Eulerian form
of material tracer conservation dC/dt = (∂t + v · ∇) C = 0 with mass conservation
ρ,t +∇· (ρ v) = 0 leads to the Eulerian conservation law for tracer mass per volume
ρC within in a seawater parcel

(ρC),t +∇ · (ρC v) = 0. (4.3)

As discussed below, additional terms appear on the right hand side when sources
or sinks of tracer are found within the fluid or at the boundaries.

In most numerical ocean models, tracer concentration is time stepped by dis-
cretizing the Eulerian equation (4.3) for the tracer mass per volume, and separately
time stepping the conservation for ocean mass per volume ρ,t +∇ · (ρ v) = 0. Com-
patibility between the two discretized conservation laws is maintained by having
the discrete equation for tracer mass per volume reduce to the discrete mass per
volume equation upon setting tracer concentration to unity: C = 1. Such compati-
bility is very important to maintain numerically.

For purposes of establishing the momentum and tracer budgets, the mass of
a Boussinesq seawater parcel is given by dM = ρo dV. Material conservation of
tracer mass (ρo dV) C still leads to material conservation of tracer concentration:
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dC/dt = 0, since now the parcel’s volume is conserved. Combining material con-
servation of tracer concentration with parcel volume conservation,∇ · v = 0, leads
to the Eulerian conservation law

C,t +∇ · (v C) = 0. (4.4)

Again, this combined equation is especially useful as a starting point numerically
since it manifests the need to maintain compatibility between conservation of vol-
ume and tracer concentration.

There are two main ways that the mass of tracer within a seawater parcel can
change. First, there can be tracer-dependent sources or sinks of tracer mass ρ S
within the fluid domain or at the boundaries. Second, there can be irreversible
molecular or turbulent mixing effects that move tracer mass between parcels. Many
of these mixing effects can be mathematically represented by the convergence of
a density weighted tracer flux ρ F. Hence, for a non-Boussinesq fluid, the time
tendency for density weighted tracer concentration is written

(ρC),t = −∇ · (ρC v + ρ F) + ρ S , (4.5)

whereas for a Boussinesq fluid it is

C,t = −∇ · (C v + F) + S . (4.6)

4.2.2 Thermodynamical tracers

Along with salinity and pressure, the density of a seawater parcel is a function
temperature. The relation

ρ = ρ(T, s, p) (4.7)

is known as the equation of state (Section 4.8), with T the in situ temperature. Since
density affects pressure via the hydrostatic balance, variations in temperature and
salinity yield important thermo-haline forces for ocean currents. Therefore, it is cru-
cial to provide an accurate and precise description of the temperature and salinity
distributions to understand and simulate ocean currents.

Developing an understanding of heat in the ocean requires some of the tools
of thermodynamics to be discussed in subsequent sections. Thermodynamics is a
phenomenological discipline whose fundamentals lie in statistical mechanics (e.g.,
Huang (1987) or Reichl (1987)), which itself can be considered a branch of infor-
mation theory (e.g., Jaynes (1957a,b)). As discussed in Section 2.2, geophysical
fluid dynamical systems of interest for ocean climate modeling involve parcels
of seawater in quasi-thermodynamical equilibrium. Hence, although these fluid
parcels evolve in time, the laws of thermodynamics can be used to establish bal-
ances of heat, work, internal energy, and entropy within the fluid. Use of equi-
librium thermodynamics for time dependent phenomenon falls under the area of
quasi-equilibrium thermodynamics (or linear irreversible thermodynamics). We
use the methods of irreversible thermodynamic to derive equations expressing the
evolution of heat within a parcel of seawater.

The traditional manner for describing heat within the ocean is via potential tem-
perature, and its evolution is typically simulated by ocean models. The reason for
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preferring potential temperature is that it is nearly conserved under adiabatic and
isentropic motion, whereas in situ temperature changes due to pressure effects even
without the transfer of heat. Conservative equations are generally more amend-
able to straightforward physical interpretations in terms of flux divergences lead-
ing to local temporal changes. They also lend themselves to standard numerical
discretizations of the transport operators. Hence, we prefer a conservative quantity
when aiming to describe heat transport in the ocean, and potential temperature has
served this purpose for sometime.

Even though potential temperature is standard in the oceanographic literature,
work by McDougall (2002) highlights the fact that potential temperature is less con-
servative in the ocean than potential enthalpy. Hence, a more accurate description
of ocean heat content, and hence the density of a fluid parcel in an ocean model, is
obtained by using potential enthalpy rather than potential temperature. We discuss
this point further in Section 4.7.

4.2.3 Dynamical tracers

The third class of tracers is termed the dynamical tracers. These tracers are built
from generally nonlinear combinations of the dynamical fields. Potential vorticity,
discussed in Section 3.7, is the most important dynamical tracer for geophysical
fluid dynamics.

4.3 Basic equilibrium thermodynamics

When discussing the continuum hypothesis in Section 2.2, we noted that a fluid par-
cel represents a macroscopically small, yet microscopically large, system in quasi-
thermodynamical equilibrium. Hence, there are innumerable molecular degrees of
freedom that are averaged over when describing a fluid as a continuum. Internal
energy embodies the energy of these internal degrees of freedom, such as arise from
thermal agitation and molecular interactions. The total energy of a macroscopic sys-
tem in quasi-thermodynamical equilibrium is thus the sum of the system’s kinetic,
potential, and internal energies.

The methods of equilibrium thermodynamics allow us to relate small changes
in work and heat applied to a parcel of seawater to changes in its internal energy.
For our purposes, seawater can be considered a two component fluid consisting of
freshwater and salt, where salt is a generic term representing a suite of dissolved
ions in seawater whose ratio is nearly constant over the ocean (Section 4.2.1). We
therefore consider thermodynamical relations for a multi-component fluid and then
specialize to the two-component case.

4.3.1 The First Law of thermodynamics

The First Law of thermodynamics establishes a relationship between infinitesimal
changes of a system’s internal energy to changes in the system’s heat, work, and
composition

dI e = δq + δw + ∑
k
µk dMk. (4.8)
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In this equation, I e is the system’s internal energy, q is the heat applied to the sys-
tem, w is the work applied to the system, µk is the chemical potential associated
with species component k, and Mk is the mass of component k. As discussed in
Section 4.3.3, the internal energy is proportional to the size of the system, with sys-
tems having more volume and mass having more energy. Quantities of this sort are
termed extensive and are labelled with the superscript e in the following.

Changes in heat and work applied to a system, δq and δw, depend on details
of the path taken to realize the changes. This path dependence motivates the use
of the δ symbol to signify an inexact differential. Their sum is path independent,
thus identifying dI e as an exact differential just as differential changes in mass of
a species, dMk, or differential changes in the mechanical energy, d [M (v2/2 +Φ)].
Correspondingly, internal energy is known as a thermodynamic state function since
its value depends only on properties of the equilibrium state, not the path used to
reach that state.

There are many ways that forces can do work to a parcel of seawater. However,
we limit our focus to work associated with quasi-static∗ changes to the parcel’s
volume Ve

δw = −p dVe (4.9)

where p is the pressure applied to the boundaries of the parcel.† The negative sign
in the pressure-work relation (4.9) arises since compressing the fluid parcel into a
smaller volume (dVe < 0) requires positive work be applied to the parcel (δw > 0).
Pressure is termed an intensive variable, measuring the intensity of a force conjugate
to the extensive variable Ve. Pressure also provides an integrating factor that relates
the inexact differential δw to the exact differential dVe. Note that for a Boussinesq
seawater parcel, its incompressibility means that no pressure-work can be applied
to this parcel.

Just as for work, heating applied to the parcel is assumed to occur in a quasi-
static manner. For such processes, we can relate heating to changes in entropy via

δq = T dζ e, (4.10)

with T the absolute in situ temperature (an intensive variable as well as an inte-
grating factor) and ζ e the entropy of the system (an extensive variable and a state
function).

4.3.2 Fundamental thermodynamical relation

With work limited to quasi-static pressure-work associated with volume changes,
and heat applied quasi-statically, substitution of relations (4.9) and (4.10) into the
First Law (4.8) leads to

dI e = T dζ e − p dVe + ∑
k
µk dMk. (4.11)

∗Quasi-static refers to an idealized situation whereby a thermodynamic system moves from one
state to another via an infinite number of intermediate equilibrium states. See Callen (1985) for details.

†In this section we prefer the symbol Ve instead of dV for the parcel volume in order to maintain
consistency with the thermodynamic literature.
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This relation holds between infinitesimal changes in thermodynamical state func-
tions. Hence, although derived for quasi-static processes from the First Law us-
ing connections to work and heat, equation (4.11) holds for arbitrary infinitesimal
changes; its connection to the First Law holds only for quasi-static processes.

Equation (4.11) represents an important fundamental thermodynamic relation, of-
ten called the first Gibbs relation. It is the starting point for many manipulations in
thermodynamics. In particular, it renders the following relations between intensive
variables and the partial derivatives of internal energy with respect to extensive
quantities

(

∂I e

∂ζ e

)

Ve ,Mk

= T (4.12)

(

∂I e

∂Ve

)

ζe ,Mk

= −p (4.13)

(

∂I e

∂Mk

)

ζe ,Ve
= µk. (4.14)

In these expressions, partial derivatives are taken with the noted variables held
constant.

4.3.3 Internal energy and homogeneous functions

The fundamental thermodynamic relation (4.11) indicates that internal energy is
naturally considered a function of entropy, volume, and mass

I e = I e(ζ e, Ve, Mk). (4.15)

If we scale the system by an arbitrary parameter λ, the extensive variables entropy,
volume, and mass also scale by this factor. Through the fundamental relation (4.11),
the internal energy scales likewise, thus rendering

I e(λζ e, λVe, λMk) = λ I e(ζ e, Ve, Mk). (4.16)

A function that scales in this way is termed a homogenous function of degree one.
Differentiating both sides of this identity with respect to λ, setting λ to unity, and
using the partial derivative identities (4.12)–(4.14), yields

I e = Tζ e − p Ve + ∑
k
µk Mk. (4.17)

This result represents a special case of Euler’s Theorem of homogeneous functions.
Taking the differential of this equation, and using the fundamental relation (4.11)
leads to the Gibbs-Duhem relation

ζ e dT−Ve dp + ∑
k

Mk dµk = 0. (4.18)
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4.3.4 Fundamental relation and specific quantities

For many purposes in fluid dynamics, it proves convenient to consider fundamen-
tal thermodynamic relations for a system of unit mass. For this purpose, we scale
away the mass of the system by setting the scale-factor λ = M−1 and introduce the
specific quantities

I e = M I (4.19)
ζ e = Mζ (4.20)
Ve = M vs (4.21)
Mk = M Ck (4.22)

where
vs = ρ−1. (4.23)

is the specific volume∗ and Ck is the mass fraction or concentration of species k
in the seawater parcel. Substituting the specific quantities into the fundamental
relation (4.11), and using expression (4.17) for the internal energy leads to the fun-
damental relation in terms of intensive state variables

dI = T dζ − p dvs + ∑
k
µk dCk. (4.24)

As mentioned earlier, seawater can for our purposes be considered a binary
system of salt and freshwater. In this case,

C1 + C2 = Csalt + Cwater

= 1.
(4.25)

Introducing this constraint into (4.24) leads to

dI = T dζ − p dvs +µ dC, (4.26)

where C = Csalt is the concentration of salt, and

µ = µsalt −µwater (4.27)

is the relative chemical potential. Note that the salinity s is related to Csalt via

s = 1000 Csalt. (4.28)

4.3.5 Adiabatic lapse rate

Consider a finite mass of water with uniform and fixed salinity (e.g., a fresh wa-
ter lake). Let this water be static and rest in a very thin horizontal layer so each
water parcel has approximately the same gravitational potential energy. Conse-
quently, all fluid parcels experience the same pressure and hence the same temper-
ature. Now isentropically (i.e., adiabatically and reversibly) rearrange the fluid into
a vertical column by introducing gravitational potential energy. Gravity imparts a

∗The subscript s distinguishes the specific volume vs from the meridional component of the ve-
locity field v.
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hydrostatic pressure (Section 3.6) that makes pressure at the bottom more than the
top. We wish to know how this difference in pressure affects the temperature in
the fluid. For this purpose, we introduce some standard thermodynamic manipu-
lations valid for a single component fluid, such as fresh water (all manipulations
here are for C =constant).

To start, introduce the specific heat at constant pressure

Cp ≡ (δq/dT)p

= T (∂ζ/∂T)p
(4.29)

where the p subscript indicates that pressure is held fixed when varying temper-
ature. Specific heat measures the change in heat associated with a change in tem-
perature, here taken with the fluid pressure held fixed. The second form of this
expression arises by assuming that changes in heat occur quasi-statically, hence al-
lowing for use of the relation between heating and entropy δq = T dζ . With entropy
a function of temperature and pressure, infinitesimal changes in entropy are given
by

dζ = (∂ζ/∂T)p dT + (∂ζ/∂p)T dp. (4.30)

Substituting the definition of heat capacity leads to

T dζ = Cp dT + T (∂ζ/∂p)T dp. (4.31)

We now eliminate (∂ζ/∂p)T in favor of a more easily measurable quantity. For
this purpose, note that use of the fundamental thermodynamic relation (4.26) (with
dC = 0) leads to

T (∂ζ/∂T)p = (∂I/∂T)p + p (∂vs/∂T)p. (4.32)

Likewise, equation (4.26) implies

T (∂ζ/∂p)T = (∂I/∂p)T + p (∂vs/∂p)T . (4.33)

Applying (∂/∂p)T to equation (4.32) and (∂/∂T)p to equation (4.33), and then sub-
tracting, leads to the identity

(∂ζ/∂p)T = −(∂vs/∂T)p. (4.34)

Introducing the thermal expansion coefficient

αT = −ρ−1 (∂ρ/∂T)p

= ρ (∂vs/∂T)p
(4.35)

yields an expression for changes in entropy in terms of changes in temperature and
pressure

T dζ = Cp dT− T (∂vs/∂T)p dp
= Cp dT− (TαT/ρ) dp.

(4.36)

Cp and αT are readily measurable response functions, thus making equation (4.36)
a very useful expression for infinitesimal entropy changes. Note that we add a
subscript T toα in order to distinguish this expansion coefficient from that defined
according to potential temperature (Section 4.8.1).



92 CHAPTER 4. OCEAN THERMO-HYDRODYNAMICS

We are now ready to answer the question posed at the start of this section.
Namely, equation (4.36) tells us that a change in temperature associated with isen-
tropic motion through a pressure field is given by

dT = (TαT/ρCp) dp (4.37)

where dζ = 0 for isentropic changes. Hence, temperature indeed changes when
pressure changes, even though there has been no heat exchanged with the environ-
ment. The combination

Γ =
TαT

ρCp
(4.38)

is termed the adiabatic lapse rate for temperature as a function of pressure. Alter-
natively, we note that a static fluid in a gravity field maintains hydrostatic balance,
thus allowing the total pressure differential to be directly related to the vertical dif-
ferential

dp = −gρ dz, (4.39)

which leads to the temperature change

dT = −(g TαT/Cp) dz. (4.40)

In this case, we introduce the adiabatic lapse rate

̂Γ =
g TαT

ρCp
(4.41)

for temperature as a function of depth. The lapse rates determine the change in
temperature (the lapse) a fluid parcel experiences as it is isentropically moved ver-
tically through a hydrostatically balanced pressure field. Note that McDougall and
Feistel (2002) provide a thorough discussion of the lapse rate in terms of molecular
dynamics.

4.4 Energy of a fluid parcel

In this section we derive energy balances of a dynamic fluid parcel maintaining
hydrostatic balance, as is the case for a parcel respecting the primitive equations.
Both non-Boussinesq and Boussinesq parcels are considered.

4.4.1 Kinematics and dynamics

Before getting started, it is useful to summarize the kinematical and dynamical
equations discussed in Chapter 3. In particular, mass conservation for a non-Boussinesq
fluid in its Eulerian form is given by (Section 3.3)

ρ,t +∇ · (ρ v) = 0, (4.42)

where
v = (u, w) = (u, v, w) (4.43)
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is the three-dimensional velocity with u = (u, v) the horizontal components. Mass
conservation in its Lagrangian form

1
dM

d(dM)
dt

=
1
ρ

dρ
dt

+
1

dV
d(dV)

dt
= 0

(4.44)

allows us to write
1

dV
d(dV)

dt
=

1
vs

dvs

dt
= ∇ · v,

(4.45)

where the second equality follows from the Eulerian form of mass conservation
(4.42). Equation (4.45) says that the relative change in volume of a fluid parcel
equals the divergence of the three-dimensional velocity field. This relation then
leads to the volume conservation relation appropriate for incompressible Boussi-
nesq fluids

1
dV

d(dV)
dt

= ∇ · v = 0. (4.46)

Mass conservation can be used to relate the Lagrangian and Eulerian forms of
time evolution for a scalar via

ρ
dψ
dt

= (ρψ),t +∇ · (vρψ). (4.47)

This is a useful relation that will be used frequently in the following. Its Boussinesq
analog is given by

dψ
dt

= ψ,t +∇ · (vψ). (4.48)

In addition to constraints imposed by mass and volume conservation for parcels
within the ocean interior, the fluid maintains kinematic constraints at the bottom
and surface taking the form

v · (∇H, 1) = 0 at z = −H (4.49)
v · (−∇η, 1) = η,t − (ρw/ρ) qw at z = η, (4.50)

which are more frequently written

u · ∇H + w = 0 at z = −H (4.51)
(∂t + u · ∇) η = (ρw/ρ) qw + w at z = η. (4.52)

For a Boussinesq fluid, the z = η boundary condition is recovered by setting ρw =
ρ. These boundary conditions are relevant when considering energy budgets over
the full ocean domain.

The dynamics of interest here result from making the hydrostatic approximation
(Section 3.6), where the vertical momentum equation reduces to

p,z = −ρ g, (4.53)

and the horizontal momentum equation (section 3.5) takes the form

(ρ u),t +∇ · (ρ v u) + ( f +M) ẑ ∧ (ρ v) = −∇p + ρ F(u). (4.54)

The momentum balance for a Boussinesq fluid results by setting ρ = ρo.
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4.4.2 Kinetic energy

For a dynamic fluid maintaining hydrostatic balance, we are only concerned with
kinetic energy in the horizontal currents

(ρ dV)K = (ρ dV) u2/2, (4.55)

where u2 = u · u and
K = u2/2 (4.56)

is the kinetic energy per unit mass. The kinetic energy associated with vertical
motions is many orders smaller, and so is ignored for fluids respecting the primitive
equations. Furthermore, as noted by Bokhove (2000), the Hamiltonian function for
a hydrostatic fluid has a kinetic energy associated just with horizontal motions.

The material time tendency for the parcel’s horizontal kinetic energy is

d(ρ dVK)
dt

= (ρ dV)
dK
dt

= dV [(ρK),t +∇ · (ρ vK)],
(4.57)

where the first step used mass conservation in its Lagrangian form d(ρ dV)/dt = 0,
and the last step used the identity (4.47) resulting from mass conservation in its
Eulerian form (4.42). The momentum equation (4.54) leads to

ρ
dK
dt

= u · ρ du
dt

= u · (−∇p + ρ Fu),
(4.58)

thus rendering
(ρK),t +∇ · (ρ vK) = u · (−∇p + ρ Fu). (4.59)

The pressure term can be interpreted as work by horizontal currents against hori-
zontal pressure gradients. For example, if currents are directed down the horizon-
tal pressure gradient (−u · ∇p > 0), then kinetic energy increases as the flow speed
increases. The opposite occurs for flow directed up the pressure gradient. Flow
directed parallel to isobars (u · ∇p = 0), such as those in geostrophic balance, do
not alter kinetic energy.

The friction term can be written in a manner exposing its dissipative aspects.
For this purpose we anticipate results from Chapter 15, where we show that the
friction force per volume acting on the horizontal momentum takes the general
form

ρ Fm = τmn
;n (4.60)

where τmn are components to the symmetric frictional stress tensor τ , the semi-
colon denotes a covariant derivative (see Section 19.2), and the summation conven-
tion is employed where repeated indices are summed over their range. This form
for friction leads to the inner product

ρ u · Fu = ρ gmn um Fn

= gmn um τ
mp
;p

= (gmn um τmp) ;p − gmn um
;p τ

mp

= (gmn um τmp) ;p − emp τ
mp

≡ ∇ · (u · τ)− ρεM.

(4.61)
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In these equations, the labels m, n are summed over their horizontal range m, n =
1, 2 whereas the label p is summed over the full three-dimensional range p = 1, 2, 3.
We introduced components to the strain tensor

2 emp = um ;p + up ;m (4.62)

whose properties are described in Section 15.3.1. We also noted that the covariant
derivative of all metric tensor components vanish

gmn ;p = 0, (4.63)

as discussed in Section 19.2.4.
The divergence∇· (u ·τ) vanishes against solid walls, yet locally it redistributes

momentum via frictional stresses. As described in Section 15.4, the ρεM term satis-
fies

emp τ
mp ≡ ρεM ≥ 0, (4.64)

with zero resulting in the absence of strain. Hence, −ρεM is a local sink of kinetic
energy. Integrating ρu · Fu over a closed fluid system leaves just the dissipation
term, since the total divergence term drops out. Therefore, as anticipated, friction
dissipates the kinetic energy of a closed fluid system.

In the ocean, frictional dissipation associated with molecular viscosity is on the
order

εM ≈ 10−9 W kg−1. (4.65)

This dissipation causes a warming, through frictional heating, of only 10−3K per
hundred years (McDougall (2002)). This term is thus very small. For large-scale
ocean modeling, kinetic energy dissipation is large and nontrivial due to the need to
maintain numerical stability (see Chapters 15 and 16). Notably, it is not appropriate
to transfer this kinetic energy dissipation in the models into a heating source. Doing
so would create a large, and unphysical, diapycnal mass flux spuriously altering
simulated water mass properties. It will be some decades before the levels of kinetic
energy dissipation in global ocean models reach the small levels appropriate for the
real ocean.

4.4.3 Gravitational potential energy

We consider here the gravitational potential energy of a fluid parcel, taken with
respect to the reference level z = 0 at the surface of a resting ocean.

4.4.3.1 Non-Boussinesq parcels

The gravitational potential energy of a non-Boussinesq fluid parcel is

(ρ dV)P = (ρ dV) g z, (4.66)

where
P = g z (4.67)
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is the potential energy per mass, and the gravitational acceleration g is assumed to
be constant over the ocean fluid (Section 3.5.2.3). The material evolution of potential
energy is thus given by

(ρ dV)
dP
dt

= (ρ dV) g w. (4.68)

That is, only motion in the vertical direction, parallel to the gravitational force,
alters the parcel’s gravitational potential energy. Mixing, surface forcing, and SGS
processes affect potential energy only so far as they affect the vertical velocity. Use
of mass conservation in the form (4.42) leads to the Eulerian conservation law

(ρP),t +∇ · (ρ vP) = wρ g. (4.69)

4.4.3.2 Boussinesq parcels

When developing budgets for a Boussinesq fluid parcel, the parcel is assumed to
have mass ρo dV, except when the parcel feels the gravitational force, where its mass
is that of a non-Boussinesq parcel, ρ dV. Hence, for purposes of deriving the po-
tential energy budget, we proceed as for the non-Boussinesq case, yet constrain the
parcel to maintain a constant volume instead of a constant mass

d (ρ dV P)
dt

= g dV
d (ρ z)

dt

= dV
(

ρ g w + g z
dρ
dt

)

.
(4.70)

The (ρ dV) g w term is the same as for the non-Boussinesq parcel. Yet the g z Dρ/dt
term is new. Again, it arises from the assumption that the Boussinesq parcel’s vol-
ume remains constant, not its mass. Hence, if the parcel changes its density, as
through fluxes of buoyancy, the parcel’s mass must change to maintain its fixed
volume. The mass changes via the presence of virtual mass fluxes. Since Boussinesq
fluids are so common in ocean modeling, it is worth discussing these issues a bit
further.

4.4.3.3 Distinctions between budgets

As just mentioned, the d lnρ/dt term means that the gravitational potential energy
of a Boussinesq fluid parcel is directly affected by buoyancy fluxes, including those
at the sub-grid scale (SGS). A particular example is the SGS flux arising from the
Gent and McWilliams (1990) closure, which provides a sink for potential energy, so
long as there is baroclinicity (horizontal density gradients) in the fluid domain (see
also Section 12.2.1). In contrast, strictly horizontal fluxes do not alter the gravita-
tional potential energy, since they flux fluid along surfaces of constant geopotential.

To further discuss the different potential energy budgets, consider a parcel that
is heated within a stratified ocean. Heating reduces the parcel’s density, which in-
creases its buoyancy and so causes it to develop an upward velocity until it reaches
a new level of neutral buoyancy. If the parcel is non-Boussinesq, then its mass
(ρ dV) remains fixed, so its gravitational potential energy increases upon moving
upward: g (ρ dV) dz/dt > 0. If the parcel is Boussinesq, its volume is fixed, so
the potential energy change is given by g dV d(zρ)/dt. Notably, for a parcel at the



4.4. ENERGY OF A FLUID PARCEL 97

ocean surface with the rigid lid assumption, heating the Boussinesq parcel leads to
a reduction in potential energy, whereas heating the non-Boussinesq parcel leads to
no change. In general, it is unclear how the potential energy will change.

The distinction between the potential energy budgets for Boussinesq and non-
Boussinesq fluids was emphasized by Xin Huang (personal communication, 1998),
where he cautioned that because of the added d lnρ/dt term, the Boussinesq bud-
get can be quite unphysical. However, it remains to be determined how important
for global ocean circulation it is to properly represent the potential energy budget.

4.4.4 Total mechanical energy

To derive a budget for the total mechanical energy (kinetic plus potential) of a sea-
water parcel, we start by providing further physical interpretations of the pressure
term −u · ∇p appearing in the kinetic energy budget of Section 4.4.2. Use of the
hydrostatic balance yields

u · ∇p = v · ∇p− w p,z

= ∇ · (v p)− p∇ · v + ρ g w,
(4.71)

thus bringing the horizontal kinetic energy budget to the form

(ρK),t +∇ · (ρ vK) = −∇ · (v p) + p∇ · v− wρ g + ρ u · Fu, (4.72)

or

ρ
d(K+P)

dt
= −∇ · (v p) + p∇ · v + ρ u · Fu, (4.73)

where we brought the kinetic and gravitational energies per mass onto the left hand
side. To facilitate comparison with subsequent results, we use (4.45) to relate the ve-
locity divergence with changes in seawater specific volume, and introduce relation
(4.61) for frictional dissipation to render

ρ
d(K+P)

dt
= −∇ · (v p− u · τ)− ρεM +

p
vs

d vs

dt
, (4.74)

where vs = ρ−1 is the specific volume. This budget indicates that mechanical en-
ergy is redistributed locally by the fluxes of pressure and friction, v p− u · τ , and
affected by sources due to pressure-work p v−1

s (d vs/dt) and frictional dissipation
−ρεM. Closure for the total energy budget comes about by noting that modifica-
tions to the mechanical energy by source terms are compensated by opposite signed
sources for the internal energy budget, thus maintaining a conserved total mechan-
ical energy plus internal energy. We further discuss these issues in Section 4.4.5.

4.4.5 Mechanical plus internal energies

As discussed in Secction 4.3, internal energy represents the energy of the molecular
degrees of freedom that are averaged-out when formulating a continuum descrip-
tion of fluid motion. Consequently, the total energy per mass E (specific energy) of
a fluid parcel is written

E = v2/2 +Φ+ I (4.75)
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with v2/2 the kinetic energy per mass, Φ the gravitational potential energy per
mass, and I the internal energy per mass. Macroscopically, this relation defines
the specific internal energy I as the total energy minus the mechanical energy. Mi-
croscopically, I embodies the energy of molecular thermal agitation and molecular
interactions. For a hydrostatic fluid using the Traditional Approximation,

E = u2/2 + g z + I . (4.76)

Energy conservation for a closed fluid system means that total energy per mass
of a fluid parcel evolves according to

ρ
dE
dt

= −∇ · (ρ JE ) (4.77)

for some flux of energy JE . Closure of the full fluid system means that the normal
component to the energy flux vanishes at system boundaries. Based on our consid-
erations of mechanical energy flux, we find it convenient to define the flux of total
energy as

ρ JE = v p− u · τ + ρ Jq. (4.78)

In this equation, we introduced a heat flux Jq which in general is a function of tem-
perature as well as concentration (see Fofonoff (1962), Gregg (1984), and Davis
(1994a), and especially Sections 58 and 59 of Landau and Lifshitz (1987) for discus-
sion). Subtracting equation (4.74) for mechanical energy evolution from equation
(4.77) leads to the expression for internal energy evolution

ρ
dI
dt

= −∇ · (ρ Jq)−
p
vs

d vs

dt
+ ρεM. (4.79)

Internal energy of a parcel is thus affected by the convergence of heat fluxes, and
sources due to pressure-work and frictional dissipation. In the absence of irre-
versible effects due to heat transport and momentum friction, internal energy is
affected only by pressure work. Consequently, Boussinesq parcels, which are in-
compressible and so cannot receive pressure work, maintain a constant internal
energy when undergoing reversible transport.

4.5 Global energy balances

We present here the mechanical energy balances maintained over the full ocean
domain by a continuum hydrostatic fluid. The global balances for mechanical plus
internal energy follow analogously. This section is somewhat outside the main line
of development in this chapter. However, it is presented here since it is useful to
consider analogous balances in their discrete form when constructing the numerical
algorithms in an ocean model.
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4.5.1 Generic form of the global energy budget

The generic form of energy within a finite region is

Ψ =
∫

(ρ dV)ψ

=
∫

dA
η
∫

−H

dzρψ,
(4.80)

where dA = dx dy is the horizontal area element, andψ the energy per mass. Time
tendencies of Ψ are affected by the passage of energy across the domain boundaries
(e.g., wind stresses, fresh water fluxes, heat fluxes, etc.), and changes in the amount
of energy within the ocean domain (e.g., source/sink terms, pressure work, dissi-
pation, etc.).

To mathematically express these changes, we first consider the integral of mass
weighted material transport of energy

∫

(ρdV)
dψ
dt

=
∫

dV[(ρψ),t +∇ · (ρ vψ)]. (4.81)

We now use Leibnitz’s Rule to interchange differentiation and integration. Use
of this rule is quite common when deriving budgets over finite regions, and so
it is useful to become familiar with the following manipulations. The local time
derivative term becomes

η
∫

−H

dz (ρψ),t = −η,t (ρψ)z=η + ∂t





η
∫

−H

dzρψ



 (4.82)

and the horizontal divergence term

η
∫

−H

dz∇ · (ρ uψ) = ∇ ·





η
∫

−H

dzρ uψ





− (ρψ u · ∇η)z=η − (ρψ u · ∇H)z=−H (4.83)

and the vertical divergence term
η
∫

−H

dz ∂z (ρwψ) = (ρψw)z=η − (ρψw)z=−H . (4.84)

Combining these results leads to
∫

(ρdV)
dψ
dt

= −
∫

z=η

dA [ρψ (η,t − w + u · ∇η)]

−
∫

z=−H

dA [ρψ (w + u · ∇η)]

+
∫

dA



∂t

η
∫

−H

dzρψ+∇ ·
η
∫

−H

dzρ uψ



 . (4.85)
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Use of the bottom and surface kinematic boundary conditions (Section 3.3) yields

∫

(ρdV)
dψ
dt

= −
∫

z=η

dAρw qwψ

+
∫

dA



∂t

η
∫

−H

dzρψ+∇ ·
η
∫

−H

dzρ uψ



 . (4.86)

The horizontal boundary conditions include either no-normal flux solid walls or
periodic conditions. In either case, the horizontal divergence term vanishes. Rear-
rangement thus leads to

Ψ,t =
∫

z=η

dAρw qwψ+
∫

(ρdV)
dψ
dt

, (4.87)

where we noted that dA = dy dy is independent of time. The left hand side repre-
sents the time tendency of domain integrated energy. In the first term on the right
hand side, dAρw qw is the mass per time of fresh water crossing the ocean surface,
and so (dAρw qw)ψ is the energy per time crossing the surface. The final term
represents material transport of energy integrated over the ocean domain.

The manipulations leading to the balance (4.87) are quite general and apply
to other scalar densities, such as tracer concentrations. Notably, with ψ = 1 the
balance reduces to mass conservation discussed in Section 3.3.3. For Boussinesq
fluids, ρw → ρ in the z = η surface term, and for the volume integrated term,
ρ→ ρo, except for the potential energy budget.

4.5.2 Kinetic energy budget

The kinetic energy of a hydrostatic fluid is given by

K =
∫

(ρ dV)K, (4.88)

whereK = u2/2 is the kinetic energy per mass of the parcel arising from horizontal
motion. Withψ = K, results from Section 4.5.1 yield

K,t =
∫

z=η

dAρw qwK+
∫

(ρ dV) u · du
dt

. (4.89)

The first term represents the passage of kinetic energy through the ocean surface
with fresh water fluxes. The momentum equation (4.54) leads to u · ρ du/dt =
u · (−∇p + ρ Fu), and so

K,t =
∫

z=η

dAρw qwK+
∫

dV u · (−∇p + ρ Fu). (4.90)

The interpretation of the second term follows that given for an individual fluid
parcel in Section 4.4.2. The kinetic energy budget for a Boussinesq fluid results
from setting ρw → ρ in the surface term, and ρ→ ρo in the volume term.
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The globally integrated contribution from u · Fu in the ocean interior is often
negative semi-definite, thus representing a dissipation. We encountered such when
discussing the frictional dissipation of a fluid parcel in Section 4.4.2. For the present
discussion, we highlight the effects of vertical deformations, in which case the fric-
tion force typically takes the form

ρ Fu
vert = (κ ρ u,z),z (4.91)

where κ > 0 is a vertical viscosity. Hence,

u · ρ Fu = u · (κ ρ u,z),z + u · ρ Fu
h

= (κ ρ u · u,z),z −κ ρ (u,z)2 + u · ρ Fu
h ,

(4.92)

where ρ Fu
h is the friction force associated with horizontal deformations. Vertical

integration of the (κ ρ u · u,z),z term picks out the contribution from the ocean sur-
face and bottom boundaries. These terms arise from boundary layer interactions
between the ocean and the overlying atmosphere/ice systems, or the underlying
solid earth. The surface stress is typically that imparted by the atmospheric winds
which increases the ocean’s kinetic energy. The bottom stress is often associated
with currents moving over rough small scale topography as well as tidal dissipa-
tion. However, for coarse resolution ocean models containing subgrid-scale pro-
cesses, one can have such interactions between topography and meso-scale eddies
act to increase the kinetic energy, as described by Holloway (1992). Further details
of the stresses remain part of the difficult sub-grid scale parameterization problem.
For now, they remain unspecified and will be written

ρκ u,z = τwind z = η (4.93)

for the ocean surface, and

ρκ u,z = τ bottom z = −H (4.94)

for the ocean bottom, thus bringing the kinetic energy budget to the form

K,t =
∫

z=η

dA (u · τwind + ρw qwK)−
∫

z=−H

dA u · τ bottom

+
∫

dV u · (−∇p + ρ Fu
h −κ ρ (u,z)2). (4.95)

The−κ ρ (u,z)2 ≤ 0 term dissipates kinetic energy via vertical deformations interior
to the ocean domain, consistent with our discussions in Section 4.4.2.

4.5.3 Gravitational potential energy budgets

We consider here the potential energy budgets for non-Boussinesq and Boussinesq
fluid parcels.
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4.5.3.1 Non-Boussinesq fluid

A finite domain of fluid has gravitational potential energy

P =
∫

(ρ dV)P (4.96)

where P = g z is the potential energy per mass of a fluid parcel. Results from
Section 4.5.1, with Dψ/dt = g w, lead to the global potential energy budget for a
non-Boussinesq fluid

P,t =
∫

z=η

dA (g zρw qw) +
∫

(ρdV) g w. (4.97)

Hence, the potential energy increases when the height of the ocean surface increases
upon the introduction of fresh water (first term) or when the vertical motion causes
mass within the ocean domain to rise (second term).

4.5.3.2 Boussinesq fluid

The total gravitational potential energy of a Boussinesq fluid has time evolution

P,t = g
∫

z=η

dA (ρ z η,t) + g
∫

dV (zρ,t). (4.98)

The mass conservation identity ρ,t = −∇ · (vρ) is not generally available here for
the volume conserving Boussinesq fluid. Instead, for density written as a function
of potential temperature, salinity, and pressure, ρ = ρ(θ, s, p), we have

ρ,t = −ραθ,t + ρβ s,t + c−2
s p,t, (4.99)

whereα = −(∂ lnρ/∂θ)p,s is the thermal expansion coefficient, β = (∂ lnρ/∂s)p,θ is
the saline contraction coefficient, and c2

s = (∂p/∂ρ)s,θ is the squared speed of sound
(see Section 4.8.1).

To proceed, we consider the special case with density equal to potential density,
and we linearize the equation of state (see discussion in Section 4.8.3). For this case,
density’s time tendency can be written

ρ,t = −∇ · (ρ v + F), (4.100)

where F represents any fluxes that act to mix or stir density. With a nonlinear equa-
tion of state, the non-flux form processes of cabbeling, thermobaricity, and halo-
baricity (see Section 12.1.7 as well as McDougall (1987a,b) must be included on
the right hand side of the density equation. We drop these, and other source/sink
terms, for brevity. Without the mixing/stirring fluxes, the evolution equation (4.100)
is mathematically the same as the mass conservation equation. Notably, however,
for the present case, besides linearizing the equation of state, the velocity field is
assumed non-divergent ∇ · v = 0.

Manipulations similar to those in Section 4.5.1 lead to
∫

dV z∇ · F =
∫

dA (η N̂ · F)z=η

+
∫

dA (H N̂ · F)z=−H −
∫

dV Fz, (4.101)
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where
N̂ = (−∇ z, 1) (4.102)

is an orientation vector. At the ocean surface where z = η, N̂ points away from the
ocean domain. In contrast, at the solid boundaries where z = −H, N̂ points into the
ocean domain. Assuming no density enters the ocean through the solid boundaries
allows us to drop the (H N̂ · F)z=−H term.

Combining with the results from Section 4.5.1 leads to the potential energy bud-
get

P,t = g
∫

z=η

dA η (ρ qw − N̂ · F) + g
∫

dV (wρ+ Fz). (4.103)

This budget affords a physical interpretation largely consistent with that discussed
for the Boussinesq parcel in Section 4.4.3.2. Notably, −N̂ · F represents surface
buoyancy fluxes that either increase or decrease the Boussinesq fluid’s potential en-
ergy, depending on the sign of the flux and its height relative to z = 0. Additionally,
the volume integrated vertical flux

∫

dV Fz acts in a similar manner as the vertical
velocity, transporting density against or with the gravitational field. In particular,
Griffies (1998) showed that the vertical skew-flux arising the Gent and McWilliams
(1990) closure is negative semi-definite, thus acting to reduce potential energy, so
long as there remains a non-zero horizontal density gradient in the fluid (see also
Section 12.2.1). Horizontal fluxes do not alter gravitational potential energy, since
they flux fluid mass parallel to geopotential surfaces.

4.6 Basic non-equilibrium thermodynamics

The purpose of this section is to introduce some basic notions of non-equilibrium
thermodynamics. In particular, we derive the equation for the evolution of entropy
within a fluid parcel. For this purpose, we start with the fundamental thermody-
namic relation (4.26) dI = T dζ − p dvs + µ dC. This relation holds for a system
infinitesimally close to thermodynamic equilibrium. If we assume that each fluid
parcel is in local thermodynamic equilibrium, yet allow the full ocean system to be
out of equilibrium, we can determine a parcel’s internal energy time evolution via

ρ
dI
dt

= ρ T
dζ
dt
− p

vs

dvs

dt
+µ ρ

dC
dt

. (4.104)

In this manner we are able to transfer the methods of equilibrium thermodynam-
ics to the linear irreversible thermodyanmics of moving fluid parcels. Note that
the term linear here refers to our assumption that the system is close to thermody-
namic equilibrium. In this case, the dissipative thermodynamic fluxes are linear
functions of the gradients of the thermodynamic state variables. Nonlinear effects
are not absent, however, due to the nonlinear advective transport, nonlinear source
terms, nonlinear equations of state, and nonlinear dependence of the transport co-
effecients. DeGroot and Mazur (1984) provide a full accounting of this subject,
and Gregg (1984) and Davis (1994a) apply these methods to small ocean scale mix-
ing. Slightly different formulations can be found in Landau and Lifshitz (1987) and
Batchelor (1967), and we prefer their approaches for the following.
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Inserting equation (4.79) for the evolution of internal energy within equation
(4.104) leads to the expression for evolution of entropy in a seawater parcel

T ρ
dζ
dt

= −∇ · (ρ Jq) + ρεM −µ ρ
dC
dt

. (4.105)

Entropy of a fluid parcel evolves by three irreversible mixing processes: (1) con-
vergence of heat fluxes, (2) mixing of momentum in a viscous fluid, thus creating
frictional dissipation sources which ultimately increase a parcel’s heat content, and
(3) mass exchange resulting in salinity mixing. Correspondingly, a parcel generally
maintains constant entropy if processes associated with its evolution are adiabatic,
frictionless, and isohaline. Since the friction source is very small in the ocean, adi-
abatic isohaline transport is very nearly isentropic. Indeed, when ocean modelers
refer to adiabatic and isohaline processes, they typically assume this to be synony-
mous with isentropic. It is important to note that the parcel’s entropy may remain
unchanged even in the event of heating and salinity diffusion. The reason is that
these effects can compensate one another, thus cancelling out. This process does not
break the Second Law of thermodynamics, since the parcel is an open system and
so its entropy need not always increase when mixing events occur. Consequently, a
frictionless, adiabatic, isohaline transport is isentropic, yet isentropic transport can
involve non-adiabatic and non-isohaline effects.

To identify local entropy sources and fluxes of entropy, let us assume salinity
mixing occurs via the convergence of a salinity flux∗

ρ
dC
dt

= −∇ · (ρ JC) (4.106)

thus leading to

ρ
dζ
dt

= − 1
T
∇ · (ρ Jq) +

µ

T
∇ · (ρ JC) + (ρ/T)εM

= −∇ · (ρ Jq/T−µ ρ JC/T)
+ ρ Jq · ∇(1/T)− ρ JC · ∇(µ/T) + (ρ/T)εM.

(4.107)

We can thus identify the entropy flux

ρ Jζ = ρ vζ + ρ Jq/T−µ ρ JC/T (4.108)

and entropy source

σ = ρ Jq · ∇(1/T)− ρ JC · ∇(µ/T) + (ρ/T)εM. (4.109)

The entropy source vanishes when all parcels are in thermodynamic equilibrium
with one another, which is the case when the temperature and chemical potential
are uniform throughout the ocean, and there is an absence of strain thus eliminating
frictional dissipation. Gregg (1984) details the form of entropy sources in the ocean
associated with small scale mixing processes.

∗Non-flux terms causing salinity mixing are not considered here.
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4.7 Thermodynamical tracers

Heating and cooling as well as mass exchange predominantly occur near the ocean
surface (neglecting geothermal effects). In contrast, transport in the interior is
nearly adiabatic and isohaline (and so nearly isentropic; e.g., equation (4.105)).
Hence, the surface ocean experiences irreversible processes that set characteristics
of the water masses moving quasi-isentropically within the ocean interior. Useful
labels for these water masses maintain their values when moving within the largely
ideal ocean interior. Salinity is a good tracer for such purposes since it is altered pre-
dominantly by mixing between waters of varying concentrations. Such constitutes
a basic property of material tracers as considered in Section 4.2.1. We discuss here
desirable properties of a thermodynamic tracer that tags the heat within a water
parcel and evolves analogously to material tracers.

4.7.1 Potential temperature

Vertical isentropic motion in the ocean changes a fluid parcel’s hydrostatic pressure,
which thus causes its in situ temperature to change in proportion to the adiabatic
lapse rate as given by equation (4.37), dT = Γdp. Consequently, in situ temperature
is not a useful thermodynamic variable to label water parcels of common origin.
Instead, it is more useful to remove the adiabatic pressure effects.

Removing adiabatic pressure effects from in situ temperature leads to the con-
cept of potential temperature, which is the in situ temperature that a water parcel of
fixed composition would have if it were isentropically transported from its in situ
pressure to a reference pressure pr, with the reference pressure typically taken at
the ocean surface. Mathematically, potential temperature θ is the reference temper-
ature obtained via an integration of dT = Γdp for an isentropic in situ temperature
change with respect to pressure (e.g., Apel (1987))

T = θ(s, T, pr) +
p
∫

pr

Γ(s,θ, p′) dp′ (4.110)

with Γ the lapse rate defined in terms of changes in pressure (equation (4.38)). By
definition, in situ temperature T equals the potential temperature θ at the reference
pressure p = pr. Elsewhere, they differ by an amount determined by the adiabatic
lapse rate. Beneath the diabatic surface mixed layer, a vertical profile of potential
temperature is far more constant than in situ temperature, where in situ temperature
increases at depth according to the lapse rate.

Potential temperature of a parcel is constant when the parcel’s entropy is con-
stant, by definition. We see this fact mathematically by noting that when entropy
changes at a fixed pressure p = pr so that temperature equals potential tempera-
ture, equation (4.36) leads to

dζ = Cp d lnθ, (4.111)

implying dζ = 0 if and only if dθ = 0.
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4.7.2 Potential enthalpy

The above properties of potential temperature are quite convenient and so have
proved useful for many oceanographic purposes. However, we have yet to ask
whether it is a convenient variable to mark the heat content in a parcel of seawater.
Traditionally, it is the potential temperature multiplied by the heat capacity that is
used for this purpose. Bacon and Fofonoff (1996) provide a review with suggestions
for this approach. In contrast, McDougall (2002) argues that potential temperature
multiplied by heat capacity is less precise, by some two orders of magnitude, than
an alternative thermodyanamic tracer called potential enthalpy.

To understand this issue from a mathematical perspective, consider the evolu-
tion equation for potential temperature

ρ
dθ
dt

= −∇ · (ρ Fθ) + ρ S , (4.112)

where Fθ is a flux due to molecular diffusion, and S is a source. That potential
temperature evolves in this manner is ensured by its being a scalar field. Consider
the mixing of two seawater parcels at the same pressure where the parcels have
different potential temperature and salinity. In the absence of the source term, the
equlibrated state consists of a single parcel with mass equal to the sum of the two
separate masses, and a potential temperature and salinity determined by their re-
spective mass weighted means. Does this actually happen in the real ocean? That
is, can we actually ignore source terms? Fofonoff (1962) and McDougall (2002) note
that it is indeed the case for salinity (and any other material tracer), yet it is not
the case for potential temperature. Instead, potential temperature contains source
terms that alter the mass weighted average equilibrated state. In contrast, poten-
tial enthalpy (discussed below) maintains the desired conservative behaviour when
mixing at constant pressure, and nearly maintains this behaviour if mixing parcels
at different pressure. Hence, ocean modelers that set the source term to zero upon
mixing potential temperature are in error, and McDougall (2002) quantifies this er-
ror.

Potential enthalpy is defined analogously to potential temperature. What mo-
tivates the use of potential enthalpy is the observation that the fundamental rela-
tion between thermodynamic state variables takes a nearly conservative form when
written in terms of potential enthalpy. To see this point, we return to the evolution
of internal energy given by equation (4.79). Introducing the enthalpy per mass
(specific enthalpy)

H = I + p vs (4.113)

leads to
ρ

dH
dt

= −∇ · (ρ Jq) +
dp
dt

+ ρεM. (4.114)

Dropping the negligible frictional dissipation (Section 4.4.2) leads to the approxi-
mate statement

ρ
dH
dt
− dP

dt
≈ −∇ · (ρ Jq). (4.115)

To proceed, note that the fundamental thermodynamic relation (4.26) becomes

dH = T dζ + vs dp +µ dC (4.116)
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in terms of enthalpy. Thus, enthalpy can be written as a function of entropy, pres-
sure, and salinity

H = H(ζ , vs, C). (4.117)

Transport of a seawater parcel without changing heat, salt, or momentum occurs
without change in entropy (equation (4.105)), thus allowing us to write

(

∂H
∂p

)

ζ ,C
= vs. (4.118)

Keeping salinity and entropy fixed (or equivalently fixed salinity and potential tem-
perature; see equation (4.111)) leads to

H(θ, s, p) = Ho(θ, s, pr) +
p
∫

pr

vs(θ, s, p′) dp′ (4.119)

withHo(θ, s, pr) defining the potential enthalpy of a parcel with potential tempera-
ture θ and salinity s. Taking the time derivative and using the approximate relation
(4.115) renders

dHo

dt
≈ −vs∇ · (ρ Jq) +

pr
∫

p

dp′
Dvs(θ, s, p′)

dt
. (4.120)

McDougall (2002) shows that for the ocean, the integral

pr
∫

p

dp′
Dvs(θ, s, p′)

dt
=

pr
∫

p

dp′
(

∂vs

∂θ
dθ
dt

+
∂vs

∂s
ds
dt

)

=
dθ
dt

pr
∫

p

dp′ vsα −
ds
dt

pr
∫

p

dp′ vsβ

(4.121)

has a size on the order of the ocean’s frictional dissipation. In these expressions, we
introduced the thermal expansion coefficient α = ∂ ln vs/∂θ and saline contraction
coefficient β = −∂ ln vs/∂s (see Section 4.8). Note we removed the time derivatives
of the potential temperature and salinity from the pressure integrals, since they are
each independent of pressure. Given the smallness of

∫ pr

p dp′ Dvs/dt, we can write
the approximate potential enthalpy equation

ρ
dHo

dt
≈ −∇ · (ρ Jq). (4.122)

Hence, potential enthalpy is a state function that approximately specifies the heat in
a parcel of seawater, and it evolves analogously to a material tracer such as salinity.
See McDougall (2002) for a proof that Ho more accurately sets the heat for a par-
cel of seawater than Cpθ. Given that it does, McDougall suggest that conservative
temperature

θH ≡
Ho(θ, s, pr)

Co
p

(4.123)
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with pr = 0 is more appropriate than potential temperature as a thermodynamic
tracer for use in an ocean model, and generally for measuring heat in the ocean. In
this equation

Co
p =
H(θ = 25◦C, s = 35psu, pr = 0)

25◦C
= 3989.24495292815 Joules kg−1 K−1

(4.124)

is a heat capacity chosen to minimize the difference between Co
pθ and potential

enthalpyHo(θ, s, pr) when averaged over the sea surface.
In the remainder of this book, we maintain the notation θ, recognizing the fact

that θH may instead be used. All formulae for density and thermodynamic fluxes
can be generalized, as shown by McDougall (2002). From a fundamental perspec-
tive, McDougall (2002) provides a compelling case for the use of conservative tem-
perature. Nonetheless, it remains a research topic to determine the significance to
simulated ocean circulation of errors made in numerical models using potential
temperature rather than conservative temperature.

4.8 Ocean density

Density is an important variable to measure in the ocean and to compute in an
ocean model. In particular, variations in the density field, via the hydrostatic bal-
ance (equation (4.53)), provide one of the most important driving forces for the
large-scale circulation. In this section we summarize various forms of density as
used in oceanography and ocean models.

4.8.1 in situ density

As mentioned earlier, density at a point in the ocean (often called the in situ density)
is generally a function of temperature, salinity, and pressure

ρ = ρ(T, s, p). (4.125)

This equation is known as the equation of state, and its form is determined empiri-
cally. Recall that equation (4.110) provides a unique relation between potential tem-
perature θ and temperature, given salinity and pressure. Hence, density can just as
well be expressed as a function of potential temperature, salinity, and pressure

ρ = ρ(θ, s, p). (4.126)

Likewise, McDougall (2002) indicates that density can be written as a function of
conservative temperature θH defined in Section 4.7.2.

Writing the equation of state in terms of θ (or θH) is more convenient for ocean
models than in terms of in situ temperature, because ocean models prognostically
solve for potential temperature (or conservative temperature). The most accurate
equation of state for use in ocean models using potential temperature has been
given by McDougall et al. (2002b), based on the work of Feistel (1993) and Feistel
and Hagen (1995). Most ocean models are now switching to such accurate formu-
lae since the earlier approximate forms, such as Bryan and Cox (1972), maintain



4.8. OCEAN DENSITY 109

a relatively narrow range of salinity variations over which the equation is valid.
With ocean models of refined grid resolution and realistic fresh water forcing, it
is desirable to remove such limitations since model salinity can vary quite widely,
especially near river mouths.

Given the functional relation ρ = ρ(θ, s, p), we can develop the material time
derivative of density

d lnρ
dt

=
(

∂ lnρ
∂p

)

s,θ

dP
dt

+
(

∂ lnρ
∂s

)

p,θ

ds
dt

+
(

∂ lnρ
∂θ

)

p,s

dθ
dt

. (4.127)

Introducing the thermal expansion and saline contraction coefficients

α = −
(

∂ lnρ
∂θ

)

p,s
(4.128)

β =
(

∂ lnρ
∂s

)

p,θ
(4.129)

and the squared speed of sound

c2
s =

(

∂p
∂ρ

)

s,θ
(4.130)

leads to

d lnρ
dt

=
1
ρ c2

s

dp
dt

+β
ds
dt
−α dθ

dt
= −∇ · v

(4.131)

where the last step used mass conservation (Section 3.3.1). For fluid parcels under-
going general isentropic motion (frictionless motion at constant potential tempera-
ture and constant salinity; see equation (4.105)), pressure satisfies

ρ dp/dt = (ρ p),t +∇ · (ρ v p)

= −(ρ cs)2∇ · v,
(4.132)

whose linearized fluctuations are known as acoustic modes.

4.8.2 Potential density

Since isentropic motion of a fluid parcel generally occurs at constant potential tem-
perature and constant salinity (see equation (4.105)), it is convenient to combine the
evolution of these two active tracers into the evolution of a single variable. Potential
density is one such combination. By definition, potential density ρpot is the density
a fluid parcel would have if isentropically moved to a reference pressure pr, often
taken as pressure at the ocean surface

ρpot = ρ(θ, s, pr). (4.133)
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Hence, the material evolution of potential density is given by

d lnρpot

dt
= β

ds
dt
−α dθ

dt
, (4.134)

where α and β are evaluated at the reference pressure pr. We see that for gen-
eral isentropic motion where potential temperature and salinity are materially con-
served and friction dissipation is negligible (see equation (4.105)), potential density
is likewise materially conserved. This behaviour is in contrast to in situ density,
whose evolution is given by equation (4.131).

In many parts of the ocean, especially those close to the reference pressure, po-
tential density is uniformly stacked in the vertical and thus forms a useful method
for layering the ocean. Many physical processes related to tracer transport naturally
occur within, rather than across, potential density layers. More precisely, these pro-
cesses occur predominantly along neutral directions (e.g., McDougall (1987a); Gent
and McWilliams (1990); Griffies et al. (1998)), which are directions tangent to the
locally defined (local values of θ, s, p) potential density surface. We have more to
say about neutral physics processes in Chapters 7, 11–14.

4.8.3 Idealized equations of state

For certain purposes, it is useful to approximate the equation of state used in ocean
models. One common idealization is to equate the in situ density to the potential
density

ρ(θ, s, p) = ρpot(θ, s, pr). (4.135)

Models using this idealized thermodynamics remove pressure effects from the in
situ density, thus becoming incompressible or Boussinesq. The use of potential
density in such models to compute hydrostatic pressure causes inaccuracies in the
horizontal pressure gradient. In particular, the thermal wind relations (Section
3.7.4), valid for geostrophic flows, are compromised. These inaccuracies are typ-
ically unimportant for idealized studies, such as dynamical studies with adiabatic
isopycnal layered models (e.g., Chapter 5). Yet the inaccuracies can be important
for realistic simulations, thus necessitating a more accurate approach (e.g., Sun et al.
(1999)).

To further idealize the Boussinesq fluid’s thermodynamics, it is convenient to
compute potential density as a linear function of potential temperature and salinity

ρpot = ρo [1−α (θ−θo) +β (s− so)], (4.136)

where α, β, θo and so are constants. Indeed, some authors consider this expres-
sion for density to be part of the Boussinesq Approximation (e.g., Chandrasekhar
(1961)), although such is distinctly not the case in the oceanographic literature.
Those wishing to avoid complications of two active tracers further simplify this
expression by dropping the salinity dependence.

4.8.4 Quasi-non-Boussinesq approximation

An intermediate approximation for the equation of state, often used in early ocean
climate models (e.g., Bryan and Cox (1972)), replaces the dependence on in situ
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pressure with the hydrostatic pressure felt by a fluid of density ρo

ρ(θ, s, p) ≈ ρ(θ, s, p = g zρo), (4.137)

where z < 0 is the depth of the fluid parcel and ρo is the constant Boussinesq ref-
erence density. Notably, this expression for density removes local time dependence
from the pressure field within the non-Boussinesq continuity equation. Hence, a
non-Boussinesq fluid using the equation of state (4.137) is transformed into a quasi-
non-Boussinesq fluid, where the term “quasi” signals that the fluid admits no acous-
tic modes. Durran (1999) refers to this approximation as pseudo incompressibility.
Notably, this method for filtering acoustic modes does not introduce a new elliptic
problem, in contrast to certain other wave filtering methods such as the rigid lid
approximation of Bryan (1969).

Use of the approximate density (4.137) in the continuity equation must be ac-
companied by its use in the tracer and velocity budgets to maintain self-consistency.
However, one recovers significant accuracy in quasi-non-Boussinesq fluids by em-
ploying the proper pressure dependence within the equation of state for purposes
of computing horizontal pressure gradients. The importance of such accuracy was
emphasized by Dewar et al. (1998).

Greatbatch et al. (2001) showed that traditional Boussinesq ocean models can
be easily generalized to non-Boussinesq models, thus removing many of the in-
accuracies of the Boussinesq approximation without introducing acoustic modes.
Note that for hydrostatic fluids, the only acoustic mode admitted is the Lamb wave
(Section 2.4.1). Numerical dissipation is likely to be sufficient to damp the Lamb
wave, so that use of the accurate density variable throughout the model should not
incur onerous time stepping constraints. We have more to say on these matters in
Chapter 10 when discussing methods to numerical solve the momentum equations.
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There is a trend in the ocean model development towards the use of generalized
vertical coordinate models. This chapter presents some salient mathematical issues.

5.1 Introduction

The choice of vertical coordinate is the most important aspect of an ocean model’s
design because it strongly prejudices the model’s representation of various resolved
and parameterized processes. Hence, there is a significant amount of fundamen-
tal physical, mathematical, and numerical research in ocean model development
aimed at optimizing the choice for vertical coordinate. Currently, there is no clear
best single choice of use for realistic global ocean climate simulations. Each has
certain advantages and disadvantages, many of which are complementary. This re-
sult argues for the use of hybrid vertical coordinates, with choices based on the flow
regime.

Generalized vertical coordinates as used in geophysical fluid models are often
termed non-orthogonal projected coordinates, for reasons which will become clear in
the following. As the issues of vertical coordinate are quite distinct from horizon-
tal coordinates, simplicity of presentation warrants the use of Cartesian (x, y) for
the horizontal coordinates. Transformations to generalized horizontal coordinates
follow the techniques discussed in Chapters 18 and 19.

The standard references for this chapter include the pioneering paper by Starr
(1945). Starr was the first to systematically present the mathematical aspects of gen-
eralized vertical coordinates. He also argued for their utility in GFD modeling. For
some reason, this paper appears to be little recognized in the oceanography litera-
ture. The paper by Bleck (1978) illustrates the geometric aspects of generalized ver-
tical coordinates and shows how to construct an energetically consistent numerical
model using generalized vertical coordinates. One of the appendices in McDougall
(1995) provides further words in support Bleck’s geometric interpretation.

5.2 Concerning the choice of vertical coordinate

To get a sense for the issues related to vertical coordinates, consider a schematic
of an ocean basin shown in Figure 5.1. This figure illustrates three fundamental
regimes of ocean dynamics. First, there is the surface mixed layer, also known
as the planetary boundary layer (PBL). This is a region of strong coupling to the
overlying atmosphere, ice, river, etc. It is typically very well mixed in the verti-
cal, and the physical processes active here are mostly three-dimensional boundary
layer processes. A parameterization of these processes is necessary in a primitive
equation ocean climate model, since explicit representation requires very high res-
olution (order meters to centimeters) and non-hydrostatic physics. In contrast to
the PBL, the ocean interior is close to ideal (i.e., isentropic as defined in Section
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4.6). Most of the processes in this region occur along surfaces of constant potential
density. The ocean’s bottom topography acts as a strong forcing on the overlying
currents through interactions with the pressure field. Additionally, there are many
regions of the ocean where turbulent bottom boundary layer (BBL) processes act to
strongly mix and transport water masses.

Each of these regimes suggest a corresponding vertical coordinate. We now
discuss these coordinates and their pros and cons.

ρ

σ

Z

Figure 5.1: Schematic of an ocean basin, illustrating three fundamental regimes
of ocean dynamics. The surface mixed layer is naturally represented using z-
coordinates; the adiabatic interior is naturally represented using isopycnal coor-
dinates; and the bottom topography is naturally represented using sigma coordi-
nates. Outside of each coordinate’s natural regime of applicability, there are many
problems and complications. This figure is based on Figure 1 from Griffies et al.
(2000a).

5.2.1 Z-coordinate ocean models

The simplest and oldest choice of vertical coordinate is z, which represents the ver-
tical distance from a resting ocean surface at z = 0, with z positive upwards and
z = −H(x, y) the ocean bottom. The vertical direction ẑ is orthogonal to the two
horizontal directions. Note that z-coordinate models are also often referred to as
geopotential coordinate models, in which z is the vertical displacement with respect
to a local approximation to surfaces of constant geopotential (Section 3.5.2.3). Z-
models are presently the model class widely used for the study of ocean climate,
hence the focus on this class in subsequent parts of this book (see Griffies et al.
(2000a) for a tabulation of publicly supported ocean climate models).

Z−coordinate ocean models have been around for many decades, with the pi-
oneering work of Bryan (1969) and Cox (1984) at GFDL providing the first ocean
climate model. The main advantages of z-coordinate models are

• Simple (and often naive) numerical discretization methods have been used,
to some success, in this framework. Other frameworks, such as isopycnal
coordinate models, require more sophisticated numerics.

• The PBL is naturally parameterized using a z-coordinate.
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• The equation of state for ocean water, which is highly nonlinear and very
important for determining water mass properties, is cleanly represented.

• In general, thermodynamical effects are well represented in z-coordinate ocean
models.

There are three main disadvantages of the z-coordinate models

• The representation of the bottom is cumbersome, as it is discretized with rect-
angular steps instead of piecewise linear fits to the topography. Rectangu-
lar steps impose a distinction between side and bottom. There are means
to overcome aspects of this awkward representation (Adcroft et al. (1997);
Pacanowski and Gnanadesikan (1998); see Figure 5.2). However, there re-
mains the issue of parameterizing the bottom boundary layer flow, which is
quite important in the ocean. Z-coordinates provide a cumbersome frame-
work for representing such processes.

• The representation of dynamics and physics in the ideal ocean interior, away
from the side and bottom boundaries, requires great care in z-models (see Part
IV).

• Use of a free surface algorithm, which is desirable for physical reasons (see
Chapter 10), imposes a limitation on deviations of the surface height to avoid
a vanishing surface model grid cell (see Figure 9.1). As ocean climate models
refine their vertical grid spacing, this limitation restricts ones ability to sim-
ulate large deviations in tidal fluctuations or large displacements by sea ice
resting on the ocean surface.

5.2.2 Sigma-coordinate ocean models

The sigma coordinate is given by

σ =
z− η
H + η

, (5.1)

where η(x, y, t) is the displacement of the ocean surface from its resting position
z = 0, and z = −H(x, y) is the ocean bottom. Note that σ = 0 at the ocean surface
and σ = −1 at the bottom. σ is monotonic, and so the relation (5.1) defines a
unique mapping between depth z and σ , thus allowing for σ to be a valid vertical
coordinate.

The main advantages of the σ coordinate are the following:

• It provides a smooth representation of the ocean bottom topography. This
choice provides for a natural representation of bottom boundary layer physics.

• Thermodynamic effects associated with the equation of state are well repre-
sented.

There are three main problems with the sigma coordinate models:
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x,y

z

Figure 5.2: Comparing the representation of the ocean bottom in z-coordinate mod-
els. Top: The old-fashioned “full cell” approach in which vertical thicknesses of all
cells are independent of latitude and longitude. Middle: The “partial cell” approach
discussed by Adcroft et al. (1997) and Pacanowski and Gnanadesikan (1998). Here,
the vertical thicknesses of the bottom cells can vary according to the topographic
features. Bottom: The “shaved cell” approach of Adcroft et al. (1997), in which the
bottom cell is a piece-wise linear fit to the topography. Both full and partial cells
have discontinuous representations of the bottom, whereas the shaved cell has a
continous depth, but discontinuous gradient of the depth. This figure is based on
Figure 3 of Griffies et al. (2000a) (see also Figure 4 from Adcroft et al. (1997)).

• The PBL can be less well represented using σ as with the z-coordinate. The
reason is that the vertical distance between grid points generally increases
as one moves away from the side continental shelf regions, hence leaving the
PBL with potentially small vertical resolution in the middle of an ocean basin.

• As with the z-coordinate models, the representation of interior adiabatic dy-
namics is unnatural in sigma coordinates.

• Sigma coordinate models have a difficult time accurately representing the
horizontal pressure gradient. Because the surfaces of constant sigma are not
generally flat, the horizontal pressure gradient, which is perpendicular to the
local vertical direction ẑ as defined by gravity, has a projection along and
across sigma surfaces. The result is a horizontal pressure gradient consisting
of two terms

∇z p = (∇σ −∇σ z ∂z) p
= ∇σ p + ρ g∇σ z.

(5.2)

To reach this result, we used the transformation (5.32) discussed in Section
5.5.3 relating horizontal gradients, and use has been made of the hydrostatic
relation p,z = −ρ g to reach the second equality. In words, ∇z p is the hori-
zontal pressure gradient taken along surfaces of constant depth z, ∇σ p is the
pressure gradient along surfaces of constant σ , and ∇σ z is the slope of the
sigma surface relative to the constant depth surfaces. In the ocean, especially
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next to the continental shelves, the slope of sigma surfaces can reach 1/100 to
1/10, which is a huge slope and so can cause the “sigma coordinate correction
term” ρ g∇σ z to be on the order of ∇σ p. The numerical representation of the
two terms is quite important. In general, errors in either one can contribute to
spurious pressure gradients that drive unphysical currents.

5.2.3 Isopycnal-coordinate ocean models

Another choice for vertical coordinate is the potential density ρ(p), where p repre-
sents a pressure at which the potential density is referenced. In most cases, the p
label is omitted for brevity, and we will do so in this book. This coordinate is a close
analog to the atmosphere’s entropy or potential temperature (see Section 4.8). In an
idealized ocean, consisting of a simplified equation of state, the potential density
defines a monotonic layering of the ocean fluid, and so it is a valid choice of vertical
coordinate. In an isentropic ocean, the potential density is materially constant (see
Section 4.8). Furthermore, physical processes, such as turbulent stirring and mix-
ing from mesoscale eddies, have a strong tendency to occur along these surfaces,
rather than across. Indeed, the ocean interior can, to a very good approximation,
be considered an ideal fluid of stacked immiscible potential density layers. Hence,
isopycnal ocean models are very useful for studying the ocean’s isentropic dynam-
ics.

With a realistic equation of state, however, there is no materially conserved den-
sity coordinate that is also monotonic with depth. For example, p = 0 was origi-
nally the common choice for a reference pressure used to define the potential den-
sity. Yet this pressure is inadequate for the deep ocean. Recently, p = 2000 decibars
has been chosen for realistic isopycnal models since it leads to fewer regions with
coordinate inversions. In general, the equation of state, as well as wide variations in
ocean salinity such as may arise from river runoff and ice melt, add complications
to isopycnal coordinate models.

Additionally, isopycnal models are an inappropriate framework for implement-
ing parameterizations of the PBL, since the PBL is approximately vertically unstrat-
ified in density. Bulk mixed layer models are often appended to isopycnal models
to represent the surface mixed layer. Additionally, some have even taken to using a
hybrid model in which a pressure-coordinate PBL region is coupled to the interior
isopycnal model.

5.2.4 Summary of the vertical coordinates

As mentioned at the beginning of this section, there appears to be no single vertical
coordinate that is without its problems when aiming to simulate the World Ocean’s
circulation over time scales relevant for climate. Hence, there is presently a great
deal of research focused on developing ocean models that allow for any continu-
ously defined vertical coordinate. Given such freedom, researchers can examine
the benefits of certain hybrid choices of vertical coordinates, such as those that are
pressure-like near the ocean surface (effectively z-like), isopycnal in the interior,
and sigma-like near the bottom.
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For the remainder of this chapter, we leave behind these particular examples of
vertical coordinates. Our focus will be on the mathematical elements of the ocean
equations as formulated with generalized vertical coordinates.

5.3 Generalized surfaces

We consider the partitioning of the ocean into stacked layers of smooth surfaces.
We define these surfaces mathematically by giving the value of a generalized vertical
coordinate, denoted in the following by s. The value of this coordinate is generally a
function of space-time, and so it maintains the functional dependence

s = s(x, y, z, t). (5.3)

From Section 5.2, we have three examples of s: z-coordinates models have s = z,
terrain following sigma-coordinate models have s = σ defined according to equa-
tion (5.1), and isopycnal coordinate models have s = ρ(p), with ρ(p) the potential
density referenced to a particular pressure. Note that s is a common notation used
in the literature, and so it will be used in this chapter. Care should be taken, how-
ever, not to confuse this symbol for ocean salinity. The context should be sufficient
to make the distinction.

5.3.1 Constraining the vertical coordinate

To make generalized surfaces useful for modeling GFD flows, we must constrain
them to never have an undulation that is parallel to the local vertical direction.
Mathematically, we insist that

s,z 6= 0 (5.4)

throughout the fluid. That is, the surfaces must retain a nontrivial vertical stratifi-
cation. Correspondingly, s,z must remain single-signed and so s is monotonic with
depth. We assume the generalized vertical coordinates discussed in this chapter
satisfy this constraint.

The constraint (5.4) allows us to unambiguously orient the surfaces of constant
generalized vertical coordinate within the ocean fluid. It is trivially satisfied for
z-models. It is also satisfied for vertically stably stratified adiabatic fluids when
the generalized coordinate surfaces are equated to surfaces of constant potential
density. And it is satisfied for terrain following sigma surfaces, so long as we do
not attempt to represent “over-hangs” or “caves” in the bottom topography.

5.3.2 Specific thickness

Mathematically, the reason we impose the above constraint on the surfaces is to en-
sure that the slopes of the surfaces never become infinite, in which case the trans-
formation between depth z and generalized vertical coordinate s becomes singular.
That is, the Jacobian of transformation ∂z/∂s = z,s (see Section 5.5.2) becomes infi-
nite.

The Jacobian of transformation z,s is often called the specific thickness, or thick-
ness for short. We can motivate this name by the following considerations. Consider
stacked set of s-layers. Invertibility of the transformation between z and s requires
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z,s to be single-signed. When multiplied by an infinitesimal increment of the gen-
eralized vertical coordinate, δs > 0, the product

δh = z,s δs (5.5)

represents the infinitesimal thickness separating the layers with generalized coordi-
nate s and s + δs. The finite difference version of the thickness is appropriate for
numerical models using generalized vertical coordinates.

5.3.3 Slope of a generalized layer

In the following, we find the opportunity to characterize the generalized coordinate
surfaces according to how they slope relative to the horizontal surfaces used in z-
coordinate ocean models. For this purpose, we introduce here the slope vector

S = ∇sz
= −z,s∇zs.

(5.6)

In this equation, ∇sz is the horizontal gradient of the depth as taken along sur-
faces of constant generalized vertical coordinate s. The second equality represents
the horizontal gradient of the generalized surface multiplied by the Jacobian of
transformation between the s and z coordinate systems. This result follows from a
coordinate transformation described in Section 5.5.

The two components of the slope vector represent the projection of the slope
of surfaces of constant generalized vertical coordinate s onto the two horizontal
coordinate directions. The squared magnitude of this vector will be written S2 =
S · S. The components to the slope vector vanish when the generalized surface
coincides with the horizontal (x, y) plane. The slope is infinite where the surface is
unstratified in the vertical. That is, where s,z = 0.

5.4 Local orthonormal coordinates

Before delving into the mathematics of the generalized vertical coordinates used in
GFD modeling, we find it useful to describe another set of coordinates. We term
these coordinates local orthonormal coordinates. They are defined at each point on an
arbitrary smooth surface by the locally orthonormal set of basis directions

e1 =
ŷ ∧∇s
|ŷ ∧∇s| (5.7)

e2 = e3 ∧ e1 (5.8)

e3 =
∇s
|∇s| . (5.9)

Note that the basis directions are each well defined regardless the orientation of the
surface. However, for those special cases where the local normal e3 has a single-
signed projection onto the vertical direction ẑ, which is the case with generalized
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vertical coordinates discussed in this chapter (see Section 5.3.1), then we can intro-
duce the slope vector S = (Sx, Sy) defined in Section 5.3.3 to yield

e1 =
x̂ + ẑ Sx
√

1 + S2
x

(5.10)

e2 =
−x̂ Sx Sy + ŷ (1 + S2

x) + ẑ Sy
√

(1 + S2)(1 + S2
x)

(5.11)

e3 =
(−S, 1)√

1 + S2
. (5.12)

Figure 5.3 shows a two-dimensional schematic of these basis vectors. “Lat-
eral” distances are measured in the direction of the vectors e1 and e2, whereas
“vertical” distances are measured parallel to the normal vector e3. When the sur-
faces are horizontally aligned, the generalized basis reduces to the Cartesian basis
(e1, e2, e3) = (x̂, ŷ, ẑ). More generally, all three basis vectors change directions ac-
cording to the dynamics and geometry of the surfaces.

e_

e_
3

1

x

z

Figure 5.3: Schematic of local orthonormal coordinates. Two generalized surfaces
are shown, with the unit vectors indicated that are appropriate for a point on one
layer. The unit vector e3 is normal to the surface, and e1 lies in the plane. The third
direction e2 is perpendicular to the page. Lateral distances are measured in the
plane of the surface, and vertical distances are measured normal to the surfaces.

The transformation matrix between the locally orthonormal coordinates and the
fixed Cartesian basis (e1, e2, e3) = (x̂, ŷ, ẑ) is generally a space-time dependent
rotation, as can be deduced since both bases are orthonormal. Consequently, the
transformation

ea = Λa
a ea (5.13)
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is comprised of directional cosines, thus rendering

(e1, e2, e3) = (x̂, ŷ, ẑ)





x̂ · e1 x̂ · e2 x̂ · e3
ŷ · e1 ŷ · e2 ŷ · e3
ẑ · e1 ẑ · e2 ẑ · e3





= (x̂, ŷ, ẑ)













1√
1+S2

x

−Sx Sy√
(1+S2)(1+S2

x)
−Sx√
1+S2

0
√

1+S2
x√

1+S2

−Sy√
1+S2

Sx√
1+S2

x

Sy√
(1+S2)(1+S2

x)
1√

1+S2













.

(5.14)

As a check, note that the determinant of the transformation is unity and its inverse
is given by its transpose, thus making it a rotation matrix.

The locally orthonormal basis is used in formulating neutral physics operators
of use in z-coordinate ocean models. We detail this formualtion in Section 12.1.
However, this basis is not so useful as a means to formulate the full equations of mo-
tion of an ocean model. The problem is that each basis vector changes in time, and
this proves inconvenient in practice. Additionally, the hydrostatic and geostrophic
balances are very important for the large-scale ocean. For numerical accuracy, it is
crucial to have these balances described by separate diagnostic equations, and to
not have any overlap or coupling within the equations describing these balances.
The locally orthonormal unit vectors do not satisfy this constraint in the general
case. Hence, this choice does not represent a practical set of coordinates for GFD
modeling.

5.5 Generalized vertical coordinates

When using generalized vertical coordinates in GFD modeling, the horizontal dis-
tance between two points is typically measured in the (x̂, ŷ) directions, hence cross-
ing through the vertical planes x = const and y = const. That is, the horizontal
coordinates for a parcel are the same coordinates (x, y) also used for geopotential
or z-coordinate ocean models. The vertical distance is measured parallel to the
x = const and y = const planes; that is, it is measured in the ẑ direction, again
just as for z-coordinate models. However, the vertical position is not specified by
giving the value of the depth z. Instead, it is specified by giving the value for the
monotonic vertical coordinate s = s(x, y, z, t).

It is notable that these coordinates have found use in other areas of theoretical
physics. In particular, condensed matter physicists and biophysicists studying the
dynamics of fluctuating membranes use these coordinates, where the coordinates
go by the name Monge gauge. Their mathematical aspects are lucidly described in
Section 10.4 of Chaikin and Lubensky (1995).

5.5.1 Projected aspect of vertical coordinates

As it is the generalized vertical coordinate s, not the vertical distance z, that is speci-
fied, lateral property gradients are taken along surfaces of constant s instead of sur-
faces of constant z. It is this property that prompts the adjective “projected” when
referring to these coordinates (see Bleck (1978) and McDougall (1995) for further
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discussion). Mathematically, these ideas imply that the transformation between
geopotential and generalized vertical coordinates takes the form

t = t (5.15)
x = x (5.16)
y = y (5.17)
s = s(x, y, z, t). (5.18)

Figure 5.4 further illustrates and describes these important, and subtle, points.

s2

s1

x

z

x1 x2

B
A

C

Figure 5.4: Schematic of projected coordinates as used in generalized vertical coor-
dinate ocean models. The lateral distance between two points is measured in the
(x̂, ŷ) directions, hence crossing through the vertical planes x = const and y = const
just as for z-coordinate ocean models. For example, the lateral distance between
points A and B is not measured along the constant s surface. Instead, it is the same
as the horizontal distance between C and B. The vertical distance is measured par-
allel to the x = const and y = const planes; that is, it is measured in the ẑ direction
just as for geopotential coordinates. However, the vertical position is specified not
by giving the depth z. Rather, it is specified by giving the value of the general-
ized vertical coordinate s = s(x, y, z, t). Lateral property gradients are thus taken
along surfaces of constant s instead of surfaces of constant z. It is this property that
prompts the adjective “projected” when referring to these coordinates. This figure
is taken after Figure 1 of Bleck (1978).

5.5.2 Transformation matrix

To develop equations describing the ocean fluid using generalized vertical coordi-
nates, and to help understand more of their mathematical properties, it is useful to
consider properties of transformations between geopotential coordinates

(ξ0,ξ1,ξ2,ξ3) = (t, x, y, z) (5.19)

and generalized vertical coordinates

(ξ0,ξ1,ξ2,ξ3) = (t, x, y, s). (5.20)
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The abstract notation helps to organize the transformation properties according to
the tensor calculus discussed in Chapters 18 and 19.

Again, it is only the manner in which we measure the vertical position that
differs between these two sets of coordinates. That is, the coordinate transformation
is just between the vertical coordinates. The horizontal coordinates and time are
measured the same in both coordinate systems. Hence, the vertical coordinate in
one coordinate system is generally dependent on all the coordinates in the other
system

z = z(x, y, s, t) (5.21)
s = s(x, y, z, t). (5.22)

This coordinate dependence leads to the transformation matrix between the “un-
barred” geopotential coordinates and the “barred” generalized vertical coordinates

Λa
a =









1 0 0 0
0 1 0 0
0 0 1 0
z,t z,x z,y z,s









. (5.23)

The determinant of this transformation matrix, also knowns as the Jacobian, is
given by

det(Λa
a) = z,s

= (s,z)−1.
(5.24)

We presented a geometric interpretation of the Jacobian in Section 5.3.2, where we
motivated calling it the specific thickness. The inverse transformation is given by

Λa
a =









1 0 0 0
0 1 0 0
0 0 1 0
s,t s,x s,y s,z









. (5.25)

5.5.3 Transformation of partial derivatives

Now that we have the transformation matrix, we can use the tensor rules estab-
lished in Chapters 18 and 19 to see how various tensor objects transform. First,
we consider how partial derivatives transform. As discussed in Section 18.10, the
transformation of the partial derivative operator takes the form

∂a = Λa
a ∂a. (5.26)

In matrix-vector notation, with the transformation matrix (5.23), this transforma-
tion can be written

(∂0, ∂1, ∂2, ∂3) = (∂0, ∂1, ∂2, ∂3)









1 0 0 0
0 1 0 0
0 0 1 0
z,t z,x z,y z,s









. (5.27)
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Note that when translating a tensor equation to a matrix-vector equation, one should
be careful not to interchange the matrix with its transpose. Multiplication yields

(

∂
∂t

)

s
=
(

∂
∂t

)

z
+ z,t ∂z (5.28)

(

∂
∂x

)

s
=
(

∂
∂x

)

z
+ z,x ∂z (5.29)

(

∂
∂y

)

s
=
(

∂
∂y

)

z
+ z,y ∂z (5.30)

∂s = z,s ∂z. (5.31)

In words, terms on the left hand side are partial derivative operators taken in the
generalized vertical coordinate frame, and those on the right hand side are in the
geopotential frame. The spatial portion of these transformations can be written in
the more tidy form

∇s + ẑ ∂s = (∇z + S ∂z) + ẑ z,s ∂z. (5.32)

In this relation,∇z is the horizontal gradient taken on surfaces of constant depth z,
∇s is the horizontal gradient taken along surfaces of constant generalized vertical
coordinate s, and S = ∇s z is the slope vector introduced in Section 5.3.3. Recall that
the horizontal portion of this relation was used in Section 5.2.2 where we discussed
the pressure gradient calculation used in sigma-coordinate models.

5.5.4 Further useful identities

Further relations of use in subsequent manipulations are the triple products
(

∂s
∂z

)

t

(

∂z
∂t

)

s

(

∂t
∂s

)

z
= −1 (5.33)

(

∂s
∂z

)

x

(

∂z
∂x

)

s

(

∂x
∂s

)

z
= −1 (5.34)

(

∂s
∂z

)

y

(

∂z
∂y

)

s

(

∂y
∂s

)

z
= −1. (5.35)

These relations are familiar from manipulations in thermodynamics such as those
used in deriving the Maxwell relations (e.g., Callen (1985)). Using the more com-
pact notation with the implicit understanding of what frame the derivatives are
acting in, the triple products imply

z,t = −s,t z,s (5.36)
z,x = −s,x z,s (5.37)
z,y = −s,y z,s (5.38)

where use was made of the identities

s,t = (t,s)−1 (5.39)

s,x = (x,s)−1 (5.40)

s,y = (y,s)−1 (5.41)

s,z = (z,s)−1. (5.42)
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5.5.5 Material time derivative and vertical velocity

When operating on a scalar field, the material time derivative d/dt is itself a scalar
under the usual non-relativistic transformations relevant for GFD. Thus it takes the
same form regardless the coordinate system

d
dt

= ∂0 + va∂a

= ∂0 + va∂a.
(5.43)

Here, the velocity components va are those for the geopotential coordinate frame

(v1, v2, v3) = (ẋ, ẏ, ż) = (u, v, w) (5.44)

with ψ̇ = dψ/dt a shorthand for the material time derivative. The velocity compo-
nents va are those for the generalized vertical frame

(v1, v2, v3) = (ẋ, ẏ, ṡ) = (u, v, ṡ). (5.45)

In a non-tensorial notation, the material time derivative is written

d
dt

=
(

∂
∂t

)

z
+ u · ∇z + w

(

∂
∂z

)

=
(

∂
∂t

)

s
+ u · ∇s + ṡ

(

∂
∂s

)

.
(5.46)

As discussed in Section 5.5.1, both geopotential and generalized vertical models
measure the same horizontal distances and the same time. Therefore, the horizontal
velocity components are the same. This point is worth emphasizing, as in Bleck
(1978). Indeed, often in the literature one can read phrases such as “the horizontal
velocity along the isopycnal surface.” Phrases such as this lend one to picture a
velocity field that is oriented parallel to the isopycnal surface. However, as seen in
Section 5.7, this phrase is sensible only when the flow is static and adiabatic.

Although the horizontal velocity is the same in both coordinate systems, the
vertical velocity is distinct. In z-coordinates, the vertical velocity component is

w =
dz
dt

=
[(

∂
∂t

)

s
+ u

(

∂
∂x

)

s
+ v

(

∂
∂y

)

s
+ ṡ

(

∂
∂s

)]

z

= z,t + u · S + ṡ z,s

(5.47)

where S = ∇sz = −z,s∇zs is the slope vector introduced in Section 5.3.3. In the
generalized vertical coordinate system, the vertical velocity component is

ṡ =
ds
dt

=
[(

∂
∂t

)

z
+ u

(

∂
∂x

)

z
+ v

(

∂
∂y

)

z
+ w

(

∂
∂z

)]

s

= s,t + u · ∇zs + w s,z.

(5.48)
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Use of the triple products (5.33)–(5.35) allows us to directly relate the vertical veloc-
ity components

s,z ż = (d/dt− u · ∇z) s− s,t (5.49)
z,s ṡ = (d/dt− u · ∇s) z− z,t (5.50)

where again ż = w.

5.6 Metrics with generalized vertical coordinates

We consider in this section two metric tensors relevant when working with gener-
alized coordinate surfaces.

5.6.1 Metric on the surface

A particular generalized surface can be defined by the algebraic equation

s(x, y, z, t)− sconst = 0, (5.51)

where sconst is a constant. If we are performing measurements on this surface, it is
relevant to ask what is the metric tensor to be used to measure distances.

To answer this question, note that on the surface,

ds = s,a dxa = 0 (5.52)

since s = sconst. As a result, the vertical coordinate differential on the surface is
related to the horizontal differentials through

dz = S · dx, (5.53)

where S is the slope vector with magnitude S, as defined in Section 5.3.3.
To measure the distance between two points on the surface, it is sufficient to

specify their horizontal positions since we know they live somewhere on the two-
dimensional surface. For GFD purposes we are concerned with generalized coor-
dinate surfaces embedded in three-dimensional Euclidean space. Hence, we can
write the squared distance between two infinitesimally close points in the form

dx · dx = (1 + S2
x)(dx)2 + (1 + S2

y)(dy)2 + 2Sx Sy dx dy, (5.54)

where we used equation (5.53). We thus identify the metric tensor for the two-
dimensional surface

gab =
(

1 + S2
x Sx Sy

Sx Sy 1 + S2
y

)

. (5.55)

Likewise, the components to the inverse metric are given by

gab = (1 + S2)−1/2
(

1 + S2
y −Sx Sy

−Sx Sy 1 + S2
x

)

. (5.56)
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Using a result from the tensor analysis discussion in Section 18.13.2, we note that
the area of an infinitesimal region on the surface of constant generalized vertical
coordinate is given by

dA(s) = [det(gab)]
1/2 dx dy

= (1 + S2)1/2 dx dy
(5.57)

where det(gab) = 1 + S2 is the determinant of the metric. This result is used in
Section 5.7 when discussing the dia-surface velocity component.

In many geophysical applications, the slope vector has components smaller
than 10−2. In this case, the generally non-diagonal metric tensor is well approx-
imated by the unit (or Kronecker) tensor δab, which is the metric for a flat manifold
(Section 18.4).

5.6.2 Metric for Euclidean space

Now consider the metric for three dimensional Euclidean space, in which the ver-
tical position of a point is measured by the generalized vertical coordinate s. A
straightforward way to compute this metric is to transform the Cartesian metric δab
to generalized coordinates using

ga b = δab Λ
a

a Λ
b

b (5.58)

with just the spatial part of the transformation matrix equation (5.23). The result is
the metric tensor

ga b =





1 + S2
x Sx Sy Sx z,s

Sx Sy 1 + S2
y Sy z,s

Sx z,s Sy z,s z2
,s



 . (5.59)

The two-dimensional horizontal subspace of this metric tensor agrees with that
given by equation (5.55), which was derived in a more direct manner from ideas
of surface differential geometry. The metric (5.59) is that which would be used
by someone measuring distances in R3 with (x, y, s) as coordinates. As with the
two-dimensional metric (5.55), the off-diagonal terms in (5.59) indicate the non-
orthogonality of the (x, y, s) coordinates.

5.7 The dia-surface velocity component

We are often concerned in geophysical fluid dynamics with the amount of fluid
passing through a surface. We define the flux of fluid parcels crossing a surface
as the dia-surface flux, with units volume per time per area (i.e., units of velocity).
In determining this flux, it is important to note that surfaces generally move in
time through the fluid and have arbitrarily changing shapes. The purpose of this
section is to describe the kinematics appropriate for determining the dia-surface
flux for a slightly restricted class of surfaces, those being defined by constant values
of the generalized vertical coordinate s. Some of the material in this section parallels
Section 4 of Haynes and McIntyre (1990). See also Section 3.2 of Pedlosky (1996) for
a complementary discussion.
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At an arbitrary point on the surface of constant generalized vertical coordinate,
the flux of fluid parcels in the direction normal to the surface is computed as

seawater flux in direction n̂ = v · n̂ (5.60)

with∗

n̂ = ∇s |∇s|−1 (5.61)

the surface unit normal. Introducing the material time derivative ṡ = s,t + v · ∇s
leads to the equivalent expression

v · n̂ = (ṡ− s,t)|∇s|−1. (5.62)

Since the surface is moving, the net flux of seawater passing through the surface is
obtained by subtracting the Eulerian velocity of the surface v(re f ) in the n̂ direction
from the Eulerian velocity component v · n̂ of the fluid parcels

net flux of seawater through surface = n̂ · (v− v(re f )). (5.63)

The velocity v(re f ) is the Eulerian velocity of a reference point fixed on the surface,
and it is written

v(re f ) = u(re f ) + w(re f ) ẑ. (5.64)

Since the reference point remains on the same s = const surface, ṡ = 0 for the
reference point. Consequently, the vertical velocity component w(re f ) is given by

w(re f ) = −z,s (s,t + u(re f ) · ∇zs), (5.65)

where equation (5.48) was used with ṡ = 0. Hence, we can write

n̂ · v(re f ) = n̂ · u(re f ) + n̂ · ẑ w(re f )

= |∇s|−1(∇zs · u(re f ) − s,t −∇zs · u(re f ))

= −s,t |∇s|−1

(5.66)

which then leads to the net flux of seawater crossing the surface

n̂ · (v− v(re f )) = (v · ∇s + s,t) |∇s|−1

= ṡ |∇s|−1

= z,s ṡ (1 + S2)−1/2

(5.67)

where we used z,s |∇s| =
√

1 + S2 in the last step.
The area normalizing the volume flux in the above discussion is the area dA(s)

of an infinitesimal region living on the surface of constant generalized vertical co-
ordinate, and this area is given by equation (5.57). Hence, the volume per time of
fluid passing through the generalized surface is given by

vol/time fluid through surface = n̂ · (v− v(re f )) dA(s)

= z,s ṡ dx dy

≡ w(s) dx dy.

(5.68)

∗Note that in equation (5.12), we used the symbol e3 instead of n̂. For the present discussion, we
prefer the more conventional notation n̂.



130 CHAPTER 5. GENERALIZED VERTICAL COORDINATES

As defined,
w(s) = z,s ṡ (5.69)

measures the volume of fluid passing through the surface, per unit area dx dy of
the horizontal projection of the surface, per unit time. Since w(s) is not a vector,
referring to it as the dia-surface velocity is a misnomer, although such is often the
case in the literature. Instead, we prefer the name dia-surface velocity component.

The expression (5.69) for w(s) allows us to write the material time derivative
(5.46) using the generalized vertical coordinate s as

d
dt

=
(

∂
∂t

)

s
+ u · ∇s + w(s)

(

∂
∂z

)

(5.70)

where we used ∂s = z,s ∂z. This form for the material time derivative motivates
some to consider w(s) as a vertical velocity component that measures the rate at
which fluid parcels penetrate the surface of constant generalized coordinate (see
Appendix A to McDougall (1995)). One should be mindful, however, to distinguish
w(s) from the generally different vertical velocity component w = dz/dt used in z-
models.

To make contact with the literature, it is useful to note the many equivalent
forms of w(s)

w(s) = z,s ṡ
= z,s (s,t + v · ∇s)
= −z,t + (v · n̂) z,s |∇s|

= −z,t + (v · n̂)
√

1 + S2

= −z,t + v · (−S, 1)
= w− (∂t + u · ∇s) z

(5.71)

where the identity (5.36) was used for the third equality, and S = ∇sz is the slope
from Section 5.3.3. The last two forms expose some special cases rendering useful
experience with certain forms for w(s). For example, with horizontal surfaces, S = 0
and so

w(s) = −z,t + w when S = 0. (5.72)

For the case when the horizontal surface is static (z,t = 0), as in geopotential coordi-
nate models, fluid parcels penetrate the surface at a rate set by the vertical velocity
component w. For the case when horizontal surfaces change their depth at a rate
z,t equal to that of the fluid parcels w, the surfaces retreat from fluid parcels at a
rate ensuring that no parcels penetrate the surfaces. Now consider a static non-
horizontal surface of constant generalized vertical coordinate, in which case

w(s) = w− u · S when z,t = 0. (5.73)

Hence, even if fluid parcels are moving upwards (w > 0), the dia-surface velocity
component can be negative so long as the horizontal velocity projected onto the
slope dominates (u · S < 0 with |u · S| > |w|). Indeed, if the slope becomes very
steep, thus reducing the generalized surface’s projection onto the horizontal plane,
and the horizontal velocity remains nontrivial, then w(s) can become quite large.
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When the generalized surface is a surface of constant potential density (i.e., an
isopycnal), then w(ρ) is termed the diapycnal velocity component. For the more
general case with neutral surfaces, w(ρ) is the dianeutral velocity component. In
these cases,

w(ρ) = z,ρ ρ̇. (5.74)

Hence, for flow materially conserving potential temperature and salinity so that
potential density is materially conserved, ρ̇ = dρ/dt = 0, the diapycnal velocity
component vanishes

w(ρ) = 0 when dρ/dt = 0. (5.75)

That is, no fluid parcels penetrate isopycnal surfaces for the case of ideal fluid flow.
Additionally, the material time derivative simplifies for ideal flow using isopycnal
coordinates, since its spatial component reduces from three to two components

d
dt

=
(

∂
∂t

)

ρ

+ u · ∇ρ when dρ/dt = 0. (5.76)

These are very important results that motivate the use of an isopycnal coordinate
description of the ocean interior, where flow is nearly ideal (Bleck (1998) highlights
this point in his review of isopycnal modeling). We see more advantages of isopyc-
nal coordinates when discussing the kinematics of mesoscale eddy motion in Chap-
ter 7.

In closing this discussion, we note that only when the potential density surfaces
are static does ideal flow lead to a three-dimensional velocity oriented parallel to
potential density surfaces

v · ∇ρ = 0 when dρ/dt = 0 and ρ,t = 0. (5.77)

This flow is often considered in idealized studies.

5.8 Conservation of mass and volume

We have established a suite of mathematical results for the generalized vertical co-
ordinate system. Now, it is time to consider how the description of the ocean fluid
is formulated using these coordinates. To start, we consider expressions for the
conservation of mass and volume.

Recall from our discussions in Chapter 3 that the mass of an infinitesimal parcel
of fluid is written

dM = ρ dV, (5.78)

where dV is the infinitesimal volume of the parcel and ρ is the in situ density. Fol-
lowing the discussion in Section 2.3.4, we note that mass conservation for each par-
cel implies

d
dt

ln(dM) =
d
dt

ln(ρ dV)

= 0.
(5.79)

The Eulerian form of mass conservation, known as the continuity equation, depends
on the coordinates used to describe the parcel’s volume.
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5.8.1 Z-coordinates

Using the geopotential z-coordinate system (x, y, z), the volume of a fluid element
is dV = dx dy dz, thus leading to

0 =
d
dt

ln(ρ dV)

=
d
dt

ln(ρ dx dy dz)

=
d lnρ

dt
+

d
dxa ẋa.

(5.80)

This expression for parcel mass conservation is satisfied by each of the parcels
throughout the fluid, which implies that it holds at each point of the fluid at all
times. It is therefore convenient to introduce the Eulerian velocity field v = ẋ lead-
ing to the statement of parcel mass conservation

d lnρ
dt

= −∇ · v. (5.81)

Expanding the material time derivative allows this equation to be written as an
Eulerian conservation law

ρ,t +∇ · (vρ) = 0. (5.82)

Assuming the parcel’s volume is conserved instead of its mass leads to the non-
divergence condition on the velocity used in the Boussinesq z-coordinate ocean
model

d
dt

(dV) = 0⇒ ∇ · v = 0. (5.83)

5.8.2 Generalized vertical coordinates

With a generalized vertical coordinate s and Cartesian horizontal coordinates, con-
servation of mass states that

ρ dV = ρ dx dy dz
= ρ dx dy z,s ds

(5.84)

is materially constant. Therefore,

d
dt

(lnρ dV) =
d(z,s)/dt

z,s
+
ρ̇

ρ
+∇s · u + ∂s ṡ

= 0,
(5.85)

where the material time derivative (Section 5.5.5) is given by

d
dt

= ∂t + u · ∇s + ṡ ∂s (5.86)

and horizontal derivatives are taken with constant s. Rearrangment leads to the
mass continuity equation in generalized vertical coordinates

(ρ z,s),t +∇s · (ρ z,su) + ∂s(ρ z,s ṡ) = 0. (5.87)
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5.8.3 Volume conservation in ρ-coordinates

Volume conservation states that dV = dx dy dz = dx dy z,s ds is a material con-
stant, which leads to

(z,s),t +∇s · (z,s u) + ∂s(z,s ṡ) = 0. (5.88)

This equation is often called the thickness equation, since it provides a prognostic
equation for the layer specific thickness z,s (Section 5.3.2). In the special case where
s = ρ(p) is the potential density, volume conservation takes the form

(z,ρ),t +∇ρ · (z,ρ u) + ∂ρ(z,ρ ρ̇) = 0, (5.89)

where we dropped the p label from potential density for brevity. For isentropic
Boussinesq flow, ρ̇ = 0, thus bringing the thickness equation to the form com-
monly used in papers discussing closure theories for mesoscale eddies (e.g., Gent
and McWilliams (1990))

(z,ρ),t +∇ρ · (z,ρ u) = 0. (5.90)

Hence, in isopycnal coordinates, the thickness and potential density equations are
explicitly coupled. For isentropic flow, this coupling results in a simplification of
the thickness equation since its transport operator reduces from three-dimensional
down to two-dimensional.

5.8.4 Mass conservation in pressure coordinates

In a hydrostatic fluid, pressure always increases with depth, and so pressure is
a valid choice for vertical coordinate. In this case, it is appropriate to write the
specific thickness weighted density in terms of pressure

ρ z,s = ρ z,p p,s

= −g−1 p,s
(5.91)

where the hydrostatic balance
p,z = −ρ g (5.92)

was used for the second equality. The hydrostatic approximation therefore singles
out pressure as being special, as can be seen by the absence of a time tendency term
for mass conservation written in pressure coordinates

∇p · u + ∂p ṗ = 0. (5.93)

Marshall et al. (1997) and deSzoeke and Samelson (2002) exploit this simple rela-
tion by mapping a Boussinesq z-coordinate ocean model to a non-Boussinesq pres-
sure coordinate model. Atmospheric modelers have used pressure, or functions of
pressure, for many years to simulate the atmosphere (e.g., Haltiner and Williams
(1980)). The main reason is that the atmosphere is somewhat more compressible
than the ocean, thus making the Boussinesq approximation less relevant.

The simplicity of the continuity equation (5.93) prompts our making a few words
aiming to lend some intuition. For this purpose, recall that the hydrostatic pressure
at a point is a function of the mass per area of fluid above this point. If we follow
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a fluid parcel that maintains the hydrostatic balance, then, by definition, this parcel
is bounded above by the same mass per area of fluid. If we then follow two parcels
within the same vertical column of fluid, each maintaining their respective hydro-
static pressures, then the mass of fluid between the parcels remains constant, again
by definition. Hence, convergence of mass into this column leads to a spreading of
the pressure surfaces. This is the physical content of the continuity equation (5.93).
It is directly analogous to the physical content of the z-coordinate continuity equa-
tion for a volume conserving fluid, where “mass” in the preceeding discussion is
replaced by “volume.”

5.9 Primitive equations

The purpose of this section is to derive the primitive equations in generalized ver-
tical coordinates.

5.9.1 Momentum balance

Recall that generalized vertical coordinates are non-orthogonal, as exemplified by
the non-diagonal metric tensor in Section 5.6. However, the “projected” nature of
the coordinates (see Figure 5.4) allows us to formulate the momentum equations
as a simple transformation from the geopotential form to the generalized vertical
coordinate form. There are no non-trivial Christoffel symbols appearing in these
equations, contrary to one’s suspicion when noting the non-orthogonality of the
coordinate system. Bleck (1978) emphasizes this point since there appeared to be
some confusion in the literature prior to his paper, even though Starr (1945) wrote
down the proper equations more than thirty years earlier.

To proceed, recall that in Section 3.5 we derived the equation describing the
dynamics of a fluid parcel using geopotential coordinates. Assuming hydrostatic
balance, this equation is given by

(ρ u),t +∇ · (ρ v u) = − f ẑ ∧ ρ u−∇z p, (5.94)

where we dropped friction and sphericity for simplicity. Use of mass conservation
in the form (5.82) leads to

ρ du/dt = − f ẑ ∧ ρ u−∇z p. (5.95)

Use of the material time derivative in terms of the generalized vertical coordinate
(Section 5.5.5) as well as mass conservation in the form (5.87) renders

(ρ z,s u),t +∇s · (ρ z,s u u) + (ρ z,s ṡ u),s = − f ẑ ∧ ρ z,s u− z,s∇z p. (5.96)

From Section 5.5.3, we have for the horizontal pressure gradient

∇z p = ∇s p−∇sz p,z

= ∇s p + ρ g∇sz
(5.97)

where the hydrostatic approximation was used for the second equality. Again, us-
ing the hydrostatic balance, we saw in Section 5.8.4 that gρ z,s = −p,s, thus leading
to the pressure gradient expression

z,s∇z p = z,s∇s p− p,s∇sz (5.98)
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and the momentum equation

(ρ z,s u),t +∇s · (ρ z,s u u) + (ρ z,s ṡ u),s

= − f ẑ ∧ ρ z,s u− (z,s∇s p− p,s∇sz). (5.99)

The term p,s∇sz was seen in Section 5.2.2 when discussing the pressure gradient
calculation in sigma-coordinate models.

5.9.2 Summary of the equations

It is a simple matter to derive the tracer balance in generalized vertical coordinates.
Doing so yields the full set of primitive equations

(ρ z,s u),t +∇s · (ρ z,s u u) + (ρ z,s ṡ u),s = − f ẑ ∧ ρ z,s u− z,s∇z p (5.100)
(ρ z,s C),t +∇s · (ρ z,su C) + ∂s(ρ z,s ṡ C) = 0 (5.101)

(ρ z,s),t +∇s · (ρ z,su) + ∂s(ρ z,s ṡ) = 0 (5.102)
p,s = −z,s ρ g, (5.103)

where we continue to ignore sub-grid-scale processes and sphericity for brevity,
and where the horizontal pressure gradient is written

∇z p = ∇s p + ρ g∇sz. (5.104)

When s = z, these equations reduce to the non-Boussinesq z-coordinate form con-
sidered in Chapters 3, 4, and 6. In the general case, we have an extra factor of the
specific thickness z,s as well as the cumbersome two terms needed to compute the
horizontal pressure gradient.

5.9.3 Non-Boussinesq in pressure coordinates

For the special case of pressure coordinates with s = p, we have

z,p∇z p = −∇pz (5.105)

and

ρ z,p = −g−1. (5.106)

That is, the specific thickness weighted pressure gradient force is given by minus
the slope of the isobaric surfaces. Hence, the non-Boussinesq hydrostatic primitive
equations in pressure coordinates are given by the simple form

u,t +∇p · (u u) + ( ṗ u),p = − f ẑ ∧ u− g∇pz (5.107)
C,t +∇p · (u C) + ∂p( ṗ C) = 0 (5.108)

∇p · u + ∂p ṗ = 0. (5.109)



136 CHAPTER 5. GENERALIZED VERTICAL COORDINATES

5.9.4 Isentropic Boussinesq in ρ-coordinates

In the case where we are interested in Boussinesq isentropic flows with a linear
equation of state, we argued in Section 5.2.3 that isopycnal models are quite use-
ful. In this case, we equate potential density to in situ density, thus leading to the
horizontal pressure gradient

∇z p = ∇ρp + ρ g∇ρz
= ∇ρ (p + ρ g z).

(5.110)

Defining the Montgomery potential

M = p + ρ g z (5.111)

leads to the Boussinesq isentropic primitive equations written in isopycnal coordi-
nates

(z,ρ u),t +∇ρ · (z,ρ u u) + (z,ρ ρ̇),ρ = − f ẑ ∧ z,ρ u−∇ρM (5.112)
(z,ρ C),t +∇ρ · (z,ρ u C) + (z,ρ ρ̇C),ρ = 0 (5.113)

(z,ρ),t +∇ρ · (z,ρ u) + (z,ρ ρ̇ ),ρ = 0 (5.114)
M,ρ = ρ g. (5.115)

Note the presence of only a single term for the horizontal pressure gradient force.
Hence, in contrast to sigma coordinate models, for ideal flow where the equation
of state is linear, isopycnal models do not suffer from difficulties numerically rep-
resenting the horizontal pressure force.

5.9.5 Neutral physics in generalized coordinates

Fundamental to the primitive equation ocean models is the parameterization of
processes that are unresolved. Part IV of this book focuses on the issues of neutral
physics as implemented and parameterized within a z-model. Key to this imple-
mentation is the slope of a neutral direction. For a neutral diffusion scheme, where
the diffusion tensor is oriented relative to the neutral direction, the slope of the
neutral direction relative to the surface of constant generalized vertical coordinate
is required. For schemes requiring a measure of baroclinicity, such as the Gent and
McWilliams (1990) scheme, the slope slope of the neutral direction relative to the
geopotential surface is required, as this slope reflects on baroclinicity in the fluid
and its available potential energy.

As discussed in Section 5.3.3, and further detailed in Section 11.6, the neutral
slope relative to a geopotential is given by

S(ρ/z) = −z,ρ∇zρ (5.116)

with ρ the locally referenced potential density. For the present purposes, it is useful
to use the special (ρ/z) subscript notation to highlight that the neutral slope is rel-
ative to a geopotential. In generalized vertical coordinates, the horizontal gradient
∇z is computed using the transformation (5.32) so that the neutral slope becomes

S(ρ/z) = −z,ρ (∇s − S(s/z)∂z)ρ

= −z,s

(

∇sρ

ρ,s

)

+ S(s/z)

= S(ρ/s) + S(s/z),

(5.117)
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where S(s/z) = ∇sz is the slope of the generalized vertical coordinate surface rel-
ative to the geopotential, and S(ρ/s) is the slope of the neutral direction relative
to the generalized vertical coordinate surface. In words, this equation reflects the
simple statement that the slope of the neutral direction relative to the geopotential
equals to the slope of the neutral direction relative to the generalized vertical coor-
dinate surface, plus the slope of the generalized vertical coordinate surface relative
to the geopotential. In isopycnal models, the slope S(ρ/s) is very small for the most
part, thus prompting isopycnal modelers to dispense with much of the numerical
machinery described in Part IV needed to implement neutral physical processes in
z-models. For σ-models, S(s/z) can be nontrivial in much of the model domain af-
fected by topography, whereas in pressure coordinate models S(s/z) is typically less
than 10−4.

(ILLUSTRATION NEEDED).
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AVERAGED OCEAN EQUATIONS

The ocean is a turbulent fluid with dynamical scales over a huge range in space
and time, and we are privy to very limited information about the fluid. Conse-
quently, we must base a practical description, such as that arising from an ocean
model, on a statistical-dynamical approach. This part of the book is far from a com-
plete treatment of this problem, which arguably is the most intractable problem in
classical physics, that being the problem of fluid turbulence. Instead, the aim here is
to illustrate some of the basics of how to formulate a description of ensemble-mean
fluid motions.

We consider here two different ensembles. The first ensemble focuses on the
small scales of motion currently unapproachable by even the finest of global ocean
model resolutions. Our viewpoint is fully Eulerian, in that we position ourselves at
a fixed point in space-time and average over the ensemble. The result of averaging
over small-scale (order meters) overturns and irreversible mixing processes is a
smooth averaged density profile.

The second ensemble focuses on the reversible stirring of fluid density in the
nearly ideal ocean interior. The dynamics of this stirring are best viewed from the
perspective of an isopycnal reference frame, where the isopycnals are well defined
stably stratified layers resulting from an average over the small scales considered
in the first ensemble. For the isopycnal reference frame, the horizontal position
and time are the same as the Eulerian frame, yet the vertical position is Lagrangian
as it moves up and down based on the undulations of a particular potential den-
sity surface. Mapping the isopycnal perspective back to the Eulerian perspective,
a mapping needed when we interpret coarse z-model simulations, requires some
tools analogous to those used in the generalized lagrangian mean formalism.

Corresponding to each of the two ensembles is an interpretation for the fields
carried by the ocean model, with the interpretation depending on the physical
regimes explicitly represented. Our dual ensemble approach is largely motivated
by the work of deSzoeke and Bennett (1993).

Determining a transparent and tidy set of averaged equations requires care in
nomenclature, frames of reference, and interpretations. Some of the steps are sub-
jective and based on convenience and desire. Indeed, how to average over an en-
semble of fluid states is largely an art. One can certainly perform a traditional
Reynolds decomposition, but will the resulting correlation terms all be worth pa-
rameterizing? As seen in our discussions, mindfulness in choosing coordinates and
weights can reduce the number of terms unavailable to the coarsened state, thus
easing the burden on what we need to parameterize. These kinematic issues be-
come critical when attacking a statistical-dynamical problem for rotating-stratified
flows. That is, care in setting up the problem goes a long way towards exposing the
key physical results and rendering tidy mean-field equations.

Sub-grid scale (SGS) transport operators arise from averaging the equations of
motion. These operators must be parameterized prior to integrating the mean-field
equations. Parameterizing SGS processes remains one of the most complex, rich,
and critical areas of theoretical oceanography. There will always be regimes that
an ocean model does not resolve, and how one parameterizes these regimes is a
key element determining the physical integrity of simulations. Some of the issues
involved with SGS parameterizations are introduced in Chapter 8. We also ex-
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pose some issues important for parameterizing SGS dianeutral processes, which
are processes that transfer properties across the smoothed neutral directions. We
have more to say on the parameterization of certain lateral SGS processes in Parts
IV and V of this book.
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discrete representation of the ensemble averaged equations.
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6.1 Introduction

The ocean is fundamentally turbulent. Given sensitive dependence on initial con-
ditions, and the limitations of ocean measurements, it is not possible to obtain com-
plete knowledge of the ocean state. Therefore, when formulating the ocean’s gov-
erning equations, it is necessary to recognize our limited access to information.

6.1.1 Ensemble averages

A common way to formulate a dynamical theory recognizing an incomplete level
of information is to consider ensemble averages. As in statistical mechanics, en-
semble averages in oceanography are obtained by formally considering an infinite
number of ocean states, each of which is described by the kinematic and dynamic
balances of Chapter 3 and the thermodynamic and tracer balances of Chapter 4.
Our interpretation of ensemble averages follows that given in Section 2.5, where
the distance in phase space between members of an ensemble is directly related to
the space-time scales that are not resolved by the “averaged observer.”

The ensemble averages considered here are taken at a fixed point in space-time.
These averages commute with space-time derivatives and integrals. As noted by
deSzoeke and Bennett (1993), such averages are appropriate when coarsening over
micro-structure processes (order meters or less) that induce small-scale turbulent
mixing between density classes. We have more to say about these physical pro-
cesses in Section 8.3. A particular result of averaging over the micro-scale is a
smoothed mean density field suitable for use as a vertical coordinate in ocean cli-
mate models (see Chapters 5 and 7 for more discussion and use of isopycnal coor-
dinates).

Even though we specify averaging at a particular space-time point, there remain
ambiguities in details. Different methods reveal different aspects of the averaged
or mean dynamics, and deviations from the mean. Density weighted averaging plays
a central role in our preferred method, with density here referring to in situ density.
Such averaging has recently become more commonplace in the ocean modeling
literature (e.g., Smith (1999), McDougall et al. (2002a), and Lu (2001). However,
it has been used in various other oceanographic studies such as Osborn and Cox
(1972) and McDougall and Garrett (1992), as well as other areas of the compressible
fluids literature (e.g., Favre (1965) as noted in the footnote on pages 21-22 of Hinze
(1975)). It appears that Favre (1965) is the first to use density weighted averages,
and so they are sometimes referred to as “Favre averages.”

6.1.2 Interpreting ocean model equations

Besides their importance from a fundamental perspective, ensemble averaged ocean
equations form the basis for the equations discretized in an ocean model. That is,
a consistent interpretation of the ocean model equations is afforded by consider-
ing them to be discretizations of ensemble averaged continuum equations, where
the average is taken over space-time scales smaller than the space-time scale of the
model grid.

In this chapter, we focus on averages taken at a fixed point in space-time. This
average is appropriate when averaging over small scales of motion where the dy-
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namics is mostly isotropic in all three dimensions. At scales approaching the meso-
scale, processes tend to occur along neutral directions, in which case the isopycnal
averaging techniques discussed in Chapter 7 are far more suitable. This dual ap-
proach to averaging follows the notions described by deSzoeke and Bennett (1993).
For still larger scales, one typically uses multiple realizations from numerical ocean
models to explicitly form the average, such as when considering the averaged re-
sponse of the large-scale ocean circulation to a suite of atmospheric states (e.g.,
Griffies and Bryan (1997)). Providing a theory for the resulting averaged ocean cli-
mate, its variability, and its predictability constitutes a theory for the ocean climate
itself (e.g., Peixoto and Oort (1992)).

6.1.3 Mean kinematics independent of dynamics

There are two forms of fluid parcel kinematics considered in this book: parcels
conserving their volume and parcels conserving their mass. As described for the
unaveraged ocean fluid in Chapter 3, kinematic relations provide constraints main-
tained regardless the dynamics. Therefore, we believe it to be key to the integrity
and usability of the equations describing the ensemble averaged ocean, and the
ocean model, that kinematics of the averaged fluid remain independent of dynam-
ical assumptions. In particular, we do not wish to require specification of unknown
closure terms, whose form depends on dynamical details, in order to determine
kinematic relations satisfied by the averaged ocean or the corresponding ocean
model. Care in formulating and interpreting the averaged equations is required
to satisfy this principle.

A key motivation for using density weighted averaging is that it assists in our
desire to keep the averaged parcel kinematics independent of dynamical closure as-
sumptions. Providing such a simple mapping between unaveraged and averaged
kinematics generally does not require much thought when averaging the Boussi-
nesq equations in z-coordinates, since volume conservation ∇ · v = 0 is a linear
constraint. Yet for non-Boussinesq equations, mass conservation ρ,t +∇ · (vρ) = 0
is a nonlinear constraint, thus requiring extra consideration. Note that the converse
is true when working in pressure coordinates, since mass conservation is a linear
constraint for a non-Boussinesq hydrostatic fluid using pressure coordinates (see
Section 5.8.4). This point illustrates the coordinate dependent aspects of averag-
ing, whereby certain coordinates more convenient than others when averaging over
certain scales. Arguably, pressure coordinates are ideal for non-Boussinesq fluids
given the simplicity of the resulting non-Boussinesq primitive equations. Nonethe-
less, we focus here on z-coordinates based on their dominance in present-day ocean
climate modeling.

Besides the mathematical utility of the density weighed approach for the non-
Boussinesq system, McDougall et al. (2002a) argued for maintaining this average
even when considering the averaged Boussinesq equations. Their reasoning is
based on noting that the resulting Boussinesq system is far more accurate than the
mean-field equations resulting from non-density weighted averages. In this con-
text, accuracy is based on comparing with the small levels of diapycnal mixing in
the ocean interior.
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6.2 Unaveraged primitive equations

Before considering the averaged equations, it is useful to summarize the unaver-
aged equations obtained in Chapters 3 and 4. Start by recalling the non-Boussinesq
equations written in z-coordinates. Mass conservation or continuity reflect the kine-
matics of the fluid parcels

ρ,t +∇ · (ρ v) = 0, (6.1)

and tracer conservation reflects the conservation of material and/or thermody-
namic tracers

(ρC),t +∇ · (ρC v) = −∇ · (ρ F) + ρ S . (6.2)

Finally, Newton’s Second Law applied to a fluid parcel leads to the linear momen-
tum balance

(ρ v),t +∇ · (ρ v v) +M (ẑ ∧ ρ v)

= −ρ g ẑ− f ẑ ∧ ρ v−∇p + ρ F(v). (6.3)

We interpret the tracer flux F as that arising from sub-grid scale (SGS) molecular
processes, such as molecular diffusion. Likewise, the friction vector F(v) is associ-
ated with momentum transport due to molecular viscosity. Averaging introduces
far more significant SGS processes associated with turbulent mixing and stirring.
These processes comprise the bulk of the SGS tracer and momentum fluxes appear-
ing in the averaged balances.

As noted in Section 5.9.2, the primitive equations written in generalized vertical
coordinates have ρ mapped to z,s ρ, with z,s the specific thickness. The pressure
gradient force is also generalized to two terms. Although there are many impor-
tant details that depend on the choice of vertical coordinates, much of the follow-
ing focus on z-coordinates can be straightforwardly generalized to arbitary vertical
coordinates, as illustrated by Greatbatch and McDougall (2002). Our focus on z-
coordinates is largely based on simplicity in presentation.

The linear momentum density (momentum per volume)

ρ v = ρo ṽ (6.4)

plays a fundamental role in the dynamical balances. It proves to be especially useful
when formulating the averaged equations. Additionally, we will find it useful to
introduce an analogous form for the subgrid-scale molecular fluxes of tracer and
momentum

ρ F = ρo F̃ (6.5)

ρ F(v) = ρo F̃(v). (6.6)

Introducing these fields leads to the mass and tracer budgets

ρ,t + ρo∇ · ṽ = 0 (6.7)
(ρC),t + ρo∇ · (C ṽ) = −ρo∇ · F̃ + ρ S , (6.8)
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as well as the linear momentum budget

ṽ,t +∇ · [(ρo/ρ) ṽ ṽ] + (ρo/ρ) M̃ ẑ ∧ ṽ

= −(ρ/ρo) g ẑ− f ẑ ∧ ṽ−∇(p/ρo) + F̃(v) (6.9)

where we wrote the advection metric frequency as

M = v ∂x ln dy− u ∂y ln dx
= (ρo/ρ) (ṽ ∂x ln dy− ũ ∂y ln dx)

= (ρo/ρ) M̃.

(6.10)

Integrating the continuity equation over the full ocean column of thickness D =
H + η, and assuming mass sources/sinks only at the ocean surface, leads to the
balance of mass per unit area within an ocean column

(ρz D),t = −ρo∇ · Ũ + ρw qw (6.11)

as well as the surface and bottom kinematic boundary conditions

ρ (∂t + u · ∇) η = ρw qw + ρw at z = η (6.12)
u · ∇H + w = 0 at z = −H. (6.13)

In these expressions, ρo Ũ =
∫ η
−H dzρ u is the depth integrated horizontal momen-

tum density and Dρz =
∫ η
−H dzρ is the depth integrated density. The mass per unit

time per unit horizontal area of fresh water crossing the ocean surface is given by
ρw qw, which is also a linear momentum per volume. As for the linear momentum
per volume of ocean fluid ρ v = ρo ṽ, we find it useful to introduce the analogous
quantity for the surface fresh water flux

ρw qw ≡ ρo q̃w, (6.14)

which leads then to

(ρz D),t = −ρo∇ · Ũ + ρo q̃w (6.15)
ρ (∂t + u · ∇) η = ρo q̃w + ρw. at z = η (6.16)

The Boussinesq equations are recovered by setting ρ→ ρo wherever it appears,
except when multiplying gravity. The resulting continuity equation becomes a con-
straint on the three-dimensional velocity field

∇ · v = 0, (6.17)

the conservative form of the tracer equation takes the form

C,t +∇ · (C v) = −∇ · F + S , (6.18)

and linear momentum balance becomes

v,t +∇ · (v v) +M ẑ ∧ v

= −(ρ/ρo) g ẑ− f ẑ ∧ v−∇(p/ρo) + F(v). (6.19)



148 CHAPTER 6. ENSEMBLE-MEAN OCEAN EQUATIONS

Note that ∇ · v = 0 means the Boussinesq fluid parcels conserve their volume
instead of their mass. Integrating the continuity equation over a full ocean column,
and assuming volume sources/sinks only at the ocean surface, leads to the balance
of volume per unit area within an ocean column

η,t = −∇ ·U + qw (6.20)

as well as the surface and bottom kinematic boundary conditions

(∂t + u · ∇) η = qw + w at z = η (6.21)
u · ∇H + w = 0 at z = −H, (6.22)

where U =
∫ η
−H dz u is the depth integrated horizontal velocity field, and qw is

the volume per unit time per unit horizontal area of fresh water crossing the ocean
surface.

An important point to note is that the linear momentum density of a Boussinesq
fluid is ρo v, instead of the non-Boussinesq ρ v. Hence, there is no difference be-
tween the velocity fields ṽ and v. The unaveraged Boussinesq equations then take
the same form whether written in terms of ṽ and v. Averaging, however, breaks the
symmetry between the averaged value of ṽ and the averaged v, as discussed next.

6.3 Averaged kinematics of a fluid parcel

The averaged continuity equation using velocity (linear momentum per mass) as
the fundamental transport field is given by

ρ,t +∇ · (ρ v) = 0→ 〈ρ〉,t +∇ · (〈v〉 〈ρ〉+ 〈v′ ρ′〉) = 0, (6.23)

where the angled brackets signify averages and primed variables are deviations
from the average. The nonlinear correlation term in the averaged mass balance
(6.23) is extremely cumbersome since, to study the averaged kinematics, it is nec-
essary to specify the unknown correlation term ∇ · 〈v′ ρ′〉. The form of this term
is dependent on the space-time scales averaged over, and the associated SGS dy-
namics. In contrast, the averaged momentum per unit volume ρo ṽ absorbs the
correlation terms

ρo〈ṽ〉 = 〈ρ v〉
= 〈ρ〉〈v〉+ 〈ρ′ v′〉,

(6.24)

thus leading to the more tidy averaged continuty equation

ρ,t + ρo∇ · ṽ = 0→ 〈ρ〉,t + ρo∇ · 〈ṽ〉 = 0. (6.25)

Notably, we have not determined the value of the correlation term 〈ρ′ v′〉. Rather,
we simply formed a mean-field mass budget that does not need its value by fo-
cusing on the averaged linear momentum per unit volume instead of the averaged
linear momentum per unit mass. There is nothing fundamental that warrants the
use of one or the other. Instead, we are guided by convenience in the resulting
equations.
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These observations reflect the subjective nature of what turbulent fluctuations
are needed for closing the mean-field equations. For purposes of working with the
averaged continuity equation in z-coordinates, the single linear term ρo 〈ṽ〉 is more
convenient than the nonlinear alternative 〈ρ〉〈v〉 + 〈ρ′ v′〉. This result promotes
density weighted averaging as a key aspect of averaging the remaining equations.

6.4 Averaged kinematics over finite domains

Recall from Section 3.3.3 that the kinematic boundary condition for the ocean sur-
face was derived by considering the time tendency of mass within a finite ocean
domain. We procede here in a similar manner for the averaged non-Boussinesq
fluid.

6.4.1 Averaged seawater mass and tracer mass

The average mass within the full ocean domain is a functional of the ocean geome-
try, density and surface height. Assuming the geometry to be fixed over the average
leads to the functional relation

〈M(ρ, η)〉 =

〈

∫

dA
η
∫

−H

dzρ

〉

=
∫

dA

〈 η
∫

−H

dzρ

〉

,

(6.26)

where the second step follows since the horizontal boundaries of the ocean are fixed
over the ensemble. More generally, the total tracer mass within the ocean is given
by

MC =
∫

(ρ dV) C

=
∫

dA
η
∫

−H

dzρC,
(6.27)

and its average is

〈MC(ρ, η, C)〉 =

〈

∫

dA
η
∫

−H

dzρC

〉

=
∫

dA

〈 η
∫

−H

dzρC

〉

.

(6.28)

When C = 1, the ocean tracer mass reduces to the total mass of water in the ocean.
In general, the averaged mass 〈M〉 of ocean fluid does not equal to the mass of a

fluid with average density 〈ρ〉 and averaged surface height 〈η〉. That is,

〈M(ρ, η)〉 6= M(〈ρ〉, 〈η〉). (6.29)
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Likewise, and more generally,

〈MC(ρ, η, C)〉 6= MC(〈ρ〉, 〈η〉, 〈C〉). (6.30)

Instead, it is necessary to introduce the averaged surface height 〈η〉 = η− η′, the
averaged density 〈ρ〉 = ρ− ρ′, and averaged tracer 〈C〉 = C − C′. For the ocean
mass, these terms lead to

〈 η
∫

−H

dzρ

〉

=

〈 〈η〉+η′
∫

−H

dz (〈ρ〉+ ρ′)
〉

=
〈η〉
∫

−H

dz 〈ρ〉+
〈 η′
∫

〈η〉

dzρ′
〉

,

(6.31)

where 〈ρ′〉 = 0 and 〈η′〉 = 0 were used. The second term can be expanded in a
Taylor series around η′ = 0 to yield

〈 η′
∫

〈η〉

dzρ′
〉

≈ 〈η′ ρ′〉+ (1/2) 〈(η′)2 ∂z ρ
′〉 (6.32)

where ρ′ on the right hand side is evaluated at z = 0, and higher order correla-
tions were dropped. Therefore, in order to formulate expressions for the averaged
mass, it is necessary to introduce a closure assumption for the infinite number of
correlation terms. Similar assumptions are needed for the averaged tracer mass.

6.4.2 Modified mean surface height

Although the above approach is systematic and rigorous, it is unsatisfying since
it produces an averaged kinematics differing fundamentally from the unaveraged
kinematics, and the averaged kinematics depends on dynamical details determin-
ing the correlations. This result is symptomatic of our working with the mean sur-
face height field 〈η〉 and mean tracer 〈C〉, both of which are inconvenient.

A more satisfying approach starts by introducing the modified mean surface height
η∗, defined according to

〈MC〉 =
∫

dA
η∗
∫

−H

dz 〈ρC〉

=
∫

dA
η∗
∫

−H

dz 〈ρ〉 〈C〉ρ,

(6.33)

where 〈ρ〉〈C〉ρ = 〈ρC〉 introduced the density weighted ensemble averaged tracer
concentration 〈C〉ρ. This average proves to be of further use when considering the
averaged tracer within a fluid parcel in Section 6.5. In short, the introduction of η∗

is defined so that
〈MC(ρ, η, C)〉 ≡ MC(〈ρ〉, η∗, 〈C〉ρ). (6.34)
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In words, the average tracer mass in the ocean (left hand side) equals to the mass
of tracer in an ocean with average density 〈ρ〉, density weighted tracer 〈C〉ρ, and
surface height η∗ (right hand side). Setting 〈C〉ρ to unity reduces the average tracer
mass to average ocean fluid mass, as expected from compatibility between tracer
and fluid masses. It is notable that the modified surface height is analogous to the
modified density field introduced in Section 7.3.4, although from different motiva-
tion.

It is possible, through pursuit of the Taylor series methods discussed previously,
to express η∗ in terms of 〈η〉, 〈ρ〉, 〈C〉, and correlations between η′, C′, and ρ′. Anal-
ogous derivations were provided by McIntosh and McDougall (1996). However,
there is no need to pursue such algebra since η∗ is sufficient to formulate the av-
eraged kinematics of finite fluid domains. It therefore serves as our mean-field
surface height.

6.4.3 Kinematic boundary condition

Continuing to use the modified surface height, we are led to develop the time ten-
dency for the averaged mass

〈M〉,t =
∫

dA



〈ρ(η∗)〉 η∗,t +
η∗
∫

−H

dz 〈ρ〉,t



 . (6.35)

Use of the averaged continuity equation (6.25) yields

〈M〉,t =
∫

z=η∗

dA
(

〈ρ〉 η∗,t + ρo 〈ũ〉 · ∇η∗ − ρo 〈w̃〉
)

+
∫

z=−H

dAρo (〈w̃〉+ 〈ũ〉 · ∇H)−
∫

dA∇ ·
η∗
∫

−H

dzρo 〈ũ〉.
(6.36)

Averaging the bottom kinematic boundary condition (3.17) leads to

〈w̃〉+ 〈ũ〉 · ∇H = 0. (6.37)

Furthermore, either no normal flow or periodic side boundary conditions allows us
to drop the convergence term, thus leading to the balance

〈M〉,t =
∫

z=η∗

dA
(

〈ρ〉 η∗,t + ρo 〈ũ〉 · ∇η∗ − ρo 〈w̃〉
)

. (6.38)

To proceed, recall that the ocean mass is altered only through passage of fresh wa-
ter through the ocean surface. Averaging the budget for mass in the full ocean,
equation (3.33), leads to

〈M〉,t =

〈

∫

z=η

dAρw qw

〉

= ρo

〈

∫

z=η

dA q̃w

〉 (6.39)
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where

ρw qw = ρo q̃w

= (ẑ · N̂) (P− E + R)ρw,
(6.40)

with N̂ = (−∇η, 1) the orientation vector at the ocean surface. Defining a modi-
fied mean surface fresh water flux according to

〈

∫

z=η

dA q̃w

〉

≡
∫

z=η∗

dA q̃∗w, (6.41)

leads to
∫

z=η∗

dA
(

〈ρ〉 η∗,t + ρo 〈ũ〉 · ∇η∗ − ρo 〈w̃〉
)

= ρo

∫

z=η∗

dA q̃∗w. (6.42)

As the horizontal area is arbitrary, we are led to the surface kinematic boundary
condition

〈ρ〉 η∗,t + ρo 〈ũ〉 · ∇η∗ = ρo 〈w̃〉+ ρo q̃∗w at z = η∗. (6.43)

In the Boussinesq limit this boundary condition becomes

η∗,t + 〈ũ〉 · ∇η∗ = 〈w̃〉+ q̃∗w at z = η∗. (6.44)

Note the absence of turbulence correlation terms in both surface boundary condi-
tions. Therefore, both are directly analogous to the unaveraged equations given in
Section 6.2, which was our motivation for introducing the modified mean fields η∗

and q̃∗w.

6.4.4 Mass within a column

We now consider the budget for the mass per unit area of fluid contained within
a single ocean column. For this case, maintain the convergence term in equation
(6.36) and use the surface kinematic boundary condition (6.43) to find

∂t





η∗
∫

−H

dz 〈ρ〉



+ ρo∇ ·





η∗
∫

−H

dz 〈ũ〉



 = ρo q̃∗w. (6.45)

which is directly analogous to the unaveraged budget (3.32). Introducing the verti-
cally integrated average density

D∗ 〈ρ〉z =
η∗
∫

−H

dz 〈ρ〉, (6.46)

with
D∗ = H + η∗ (6.47)

the total thickness of the modified mean fluid column, and the averaged horizontal
momentum density of a column

ρo 〈Ũ〉 = ρo

η∗
∫

−H

dz 〈ũ〉, (6.48)
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leads to the mass balance for a column of fluid
(

D∗ 〈ρ〉z
)

,t
= −ρo∇ · 〈Ũ〉+ ρo q̃∗w. (6.49)

The Boussinesq limit recovers

η∗,t = −∇ · 〈Ũ〉+ q̃∗w. (6.50)

Both balances are directly analogous to the unaveraged balances given in Section
6.2.

6.5 Averaged tracer in a parcel

Our goal here is to derive a mean-field tracer equation which is compatible with
the preferred mean-field continuity equation derived in Section 6.3.

6.5.1 Conventional approach

Let us first consider a conventional Reynolds decomposition of the tracer equation
for non-Boussinesq fluids. The product of density and tracer becomes

〈ρC〉 = 〈ρ〉 〈C〉+ 〈ρ′ C′〉, (6.51)

and the triple product becomes

〈ρ v C〉 = 〈ρ〉 (〈v〉〈C〉+ 〈v′ C′〉)
+ 〈v〉〈ρ′ C′〉+ 〈C〉〈ρ′ v′〉+ 〈ρ′ v′ C′〉, (6.52)

thus leading to the mean tracer equation

(〈ρ〉 〈C〉+ 〈ρ′ C′〉),t = −∇ · [〈ρ〉 (〈v〉〈C〉+ 〈v′ C′〉)
+ 〈v〉〈ρ′ C′〉+ 〈C〉〈ρ′ v′〉+ 〈ρ′ v′ C′〉] (6.53)

where the source and molecular diffusion terms were temporarily dropped for
brevity. Note the presence of five turbulence correlation terms, whose forms are
generally unknown. Additionally, by setting 〈C〉 = 1 and C′ = 1 we recover the
mean continuity equation

〈ρ〉,t = −∇ · (〈ρ〉 〈v〉+ 〈v′ ρ′〉). (6.54)

Recall that in Section 6.3, we argued that this form of the averaged continuity equa-
tion is not convenient since it leads to a mean kinematics involving unknown tur-
bulence correlation terms. Therefore, we conclude that a conventional Reynolds
decomposition of the tracer equation is unsatisfying since it leads to multiple tur-
bulence terms and an averaged tracer equation that is not consistent with the pre-
ferred form of the averaged continuity equation.
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6.5.2 Density weighted approach

To motivate an alternative approach, let us start by recalling that in Section 4.2.1,
material tracer concentration C is interpreted as the mass of tracer substance within
a parcel of seawater per mass of seawater

C =
dMC

dM

=
dMC

ρ dV
.

(6.55)

As defined, C is a scalar since the tracer mass and seawater parcel mass are both
scalars. If instead of following the parcel, we take an Eulerian perspective and con-
sider the ensemble averaged tracer mass within a fixed volume, such as a discrete
model grid cell, then we are led to

〈dMC〉 = 〈ρC〉 dV
= 〈ρ〉〈C〉ρ dV,

(6.56)

where
〈ρ〉 〈C〉ρ ≡ 〈ρC〉 (6.57)

introduced the density weighted ensemble average tracer concentration 〈C〉ρ. We al-
ready saw in Section 6.4.2 how this density weighted tracer field appeared naturally
when considering the averaged tracer mass in the full ocean domain. We use this
average here, along with the density weighted velocity field

〈ρ〉 〈v〉ρ ≡ 〈ρ v〉
= ρo〈ṽ〉

(6.58)

and seek a mean-field tracer equation in terms of these ensemble means.
To start, we note that deviations from a density weighted average, defined ac-

cording to

C = 〈C〉ρ + C′ρ (6.59)

v = 〈v〉ρ + v′ρ, (6.60)

satisfy

〈ρC′ρ〉 = 0 (6.61)

〈ρ v′ρ〉 = 0. (6.62)

Hence, the triple product term in the tracer equation takes the form

ρC v = ρ (〈C〉ρ + C′ρ) (〈v〉ρ + v′ρ)

= ρ 〈C〉ρ 〈v〉ρ + ρ 〈C〉ρ v′ρ + ρC′ρ 〈v〉ρ + ρC′ρ v′ρ,
(6.63)

which has an average given by

〈ρC v〉 = 〈C〉ρ 〈ρ〉 〈v〉ρ + 〈ρC′ρ v′ρ〉
= ρo 〈C〉ρ 〈ṽ〉+ 〈ρC′ρ v′ρ〉

(6.64)

where the identities (6.61) and (6.62) were used. Notably, the five turbulence cor-
relation terms from the conventional approach (equation (6.52)) have been reduced
to a single unknown correlation term in equation (6.68) via use of density weighted
averages. This is a tremendous simplification of the closure problem.
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6.5.3 Sub-grid scale tracer fluxes

In addition to the molecular diffusive flux of tracer, the ensemble mean of

ρ Fsgs = ρC′ρ v′ρ (6.65)

provides a sub-grid scale (SGS) contribution to the evolution of ensemble mean
tracer. This term arises from the density weighted SGS fluctuations of tracer concen-
tration and velocity. For ocean climate modeling, molecular diffusion is far smaller
than the SGS contribution from C′ρ v′ρ. Hence, molecular diffusion contributions
will be formally incorporated into ρ Fsgs in the following development.

In a manner similar to our introduction of the density weighted velocity field ṽ
via the definition ρ v = ρo ṽ, we now introduce the SGS tracer flux F̃sgs via

ρ Fsgs ≡ ρo F̃sgs. (6.66)

With this definition, the ensemble mean tracer transport term takes the form

〈ρC v〉 = ρo (〈C〉ρ 〈ṽ〉+ 〈F̃sgs〉), (6.67)

thus yielding the time tendency for the ensemble averaged tracer concentration in
a non-Boussinesq fluid

∂t (〈ρ〉〈C〉ρ) + ρo∇ · (〈ṽ〉〈C〉ρ) = −ρo∇ · 〈F̃sgs〉+ 〈ρ〉〈S〉ρ. (6.68)

The Boussinesq results are recovered by setting 〈ρ〉 → ρo

∂t 〈C〉ρ +∇ · (〈ṽ〉〈C〉ρ) = −∇ · 〈F̃sgs〉+ 〈S〉ρ. (6.69)

Note that we chose to keep the density weighted form of the averaged Boussi-
nesq tracer equation (6.69). According to the analysis of McDougall et al. (2002a),
doing so allows for a self-consistent set of equations compatible with the small lev-
els of diapycnal mixing in the ocean interior. Also note that setting the averaged
tracer concentration to unity, 〈C〉ρ = 1, assuming SGS fluxes vanish and dropping
source terms, reduces the tracer equation for both the non-Boussinesq and Boussi-
nesq systems to their respective averaged continuity equations. Such compatibility
between tracer and mass/volume conservation is important to maintain in the nu-
merical model. If the sources are nontrivial when tracer is unity; i.e., if the sources
introduce mass or volume, then compatibility requires sources to be part of the
continuity equations as well.

6.5.4 Boussinesq limit in the averaged fluid

We highlight here an important formal point. As we have seen, the transition from
averaged non-Boussinesq to averaged Boussinesq fluids arises by first averaging
the non-Boussinesq equations and then setting 〈ρ〉 → ρo, except when multiplying
gravity. Correspondingly, averaged Boussinesq fluids satisfy 〈ṽ〉 = 〈v〉ρ, whereas
〈ṽ〉 6= 〈v〉. Hence, this approach breaks the symmetry between ṽ and v present in
the unaveraged Boussinesq equations.
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6.5.5 A not-so-useful alternative

The density multiplier in the time tendency term for the non-Boussinesq tracer
equation (6.68) may be eliminated by introducing the new tracer variable

ρo C̃ = ρC. (6.70)

This variable is directly analogous to the velocity variable ρ v = ρo ṽ. The ensemble
mean of the new tracer variable is given by

ρo 〈C̃〉 = 〈ρ〉〈C〉ρ, (6.71)

thus leading to the time tendency and advective portions of the tracer equation
taking the form

∂t (〈ρ〉 〈C〉ρ) + ρo∇ · (〈ṽ〉 〈C〉ρ) = 〈C̃〉,t +∇ · (〈v〉ρ〈C̃〉). (6.72)

This form is mathematically similar to the Boussinesq tracer equation. However,
this form does not manifest compatibility between tracer and mass conservation.
Recall from the end of Section 6.5.2 that compatibility is manifest when setting
〈C〉ρ = 1 in the tracer equation reduces the tracer budget of a parcel to its mass
budget. If we instead naively set 〈C̃〉 = 1 throughout the fluid, then equation (6.72)
renders ∇ · 〈v〉ρ = 0. However, ∇ · 〈v〉ρ = 0 is not an expression of mass conser-
vation. Rather, it is a solution generally realized only for the trivial case of uniform
〈C〉ρ and 〈ρ〉, as can be seen by the definition (6.71). Hence, for purposes of main-
taining a manifest compatibility between tracer and mass conservation, it is more
convenient to use 〈C〉ρ instead of 〈C̃〉 as the fundamental tracer variable.

6.6 Averaged momentum budget

When deriving an averaged momentum budget, the question arises whether we
should work with the averaged form of the budget (6.3), written in terms of the
linear momentum per mass v, or the budget (6.9) written in terms of the linear
momentum per volume ρo ṽ. As we have seen thus far, the linear momentum per
volume ρo ṽ is a very convenient transport variable for the averaged conservation
equations of mass and tracer. Hence, we aim to derive an averaged momentum
budget where time tendencies of 〈ṽ〉 can be determined. Since this is not the tra-
ditional method, we start by pointing out the form of the averaged momentum
budget where the time tendency of 〈v〉 is determined.

6.6.1 Time tendency for 〈v〉
To isolate the time tendency of velocity, use mass conservation and divide by den-
sity in equation (6.3) to find

(∂t + v · ∇+M ẑ∧ )v = −g ẑ− f ẑ ∧ v−∇p/ρ+ F(v). (6.73)

Taking an ensemble average leads to

(∂t + 〈v〉 · ∇+ 〈M〉 ẑ∧ )〈v〉 = − f ẑ ∧ 〈v〉 − g ẑ− 〈∇p/ρ〉+ 〈F(v)〉. (6.74)
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To reach this expression, we assumed that nonlinear correlation terms arising from
the advection terms are absorbed into the averaged friction vector

〈F(v)〉 = −〈(v′ · ∇) v′〉 − ẑ ∧ 〈M′ v′〉, (6.75)

where the molecular term is dropped since it is relatively small for averages over
scales appropriate for ocean climate models. The pressure term can be written in
terms of an average and correlations

〈∇p/ρ〉 ≈ ∇〈p〉〈ρ〉 +
〈ρ′∇p′〉
〈ρ〉2 +

〈ρ′ ρ′〉∇〈p〉
〈ρ〉3 , (6.76)

where higher order correlations were dropped. The pressure-density turbulence
correlation terms cannot be absorbed by the SGS friction vector 〈F(v)〉, since 〈F(v)〉 is
meant to represent SGS transport terms, not pressure-density fluctuations. Hence,
the pressure-density terms must be parameterized separately, where the parame-
terization depends on the dynamics at the SGS.

6.6.2 Time tendency for 〈ṽ〉

Now consider an average of the momentum equation (6.9) written in terms of the
momentum density ρo ṽ and using density weighted averages. As with the previ-
ous manipulations, averaging produces nonlinear correlations from the averaged
nonlinear advection

〈ρ v v〉 = 〈ρ〉〈v〉ρ〈v〉ρ + 〈ρ v′ρ v′ρ〉
= ρo 〈ṽ〉〈v〉ρ + 〈ρ v′ρ v′ρ〉

(6.77)

and advection metric

ẑ ∧ 〈Mρ v〉 = ρo ẑ ∧ 〈M̃〉〈v〉ρ + ẑ ∧ 〈ρM′
ρ v′ρ〉, (6.78)

where again ρo 〈ṽ〉 = 〈ρ〉〈v〉ρ.
To massage the SGS momentum terms, we proceed in a manner similar to that

done in Section 6.5.3 for the SGS tracer fluxes. Thus, we introduce the SGS momen-
tum flux

ρ F(v)
sgs = ∇ · (ρ v′ρ v′ρ) + ẑ ∧ ρM′

ρ v′ρ

≡ ρo F̃(v)
sgs

(6.79)

and assume the much smaller molecular diffusion contribution to be absorbed by
this flux. This form of the SGS momentum flux leads to the averaged non-Boussinesq
momentum balance

〈ṽ〉,t +∇ · (〈v〉ρ 〈ṽ〉) + 〈M̃〉 ẑ ∧ 〈v〉ρ

= −(〈ρ〉/ρo) g ẑ− f ẑ ∧ 〈ṽ〉 −∇(〈p〉/ρo) + 〈F̃(v)
sgs〉. (6.80)

Notably, there is no need to parameterize pressure-density correlations appearing
in the pressure gradient force 〈∇p/ρ〉, as needed with the equation for 〈v〉,t. We
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consider this result yet another reason for using 〈ṽ〉 as our fundamental transport
field.

The momentum equation for a Boussinesq fluid arises by setting 〈ρ〉 → ρo,
except when multiplying gravity

〈ṽ〉,t +∇ · (〈ṽ〉 〈ṽ〉) + 〈M̃〉 ẑ ∧ 〈ṽ〉

= −(〈ρ〉/ρo) g ẑ− f ẑ ∧ 〈ṽ〉 −∇(〈p〉/ρo) + 〈F̃(v)
sgs〉. (6.81)

The pressure gradient force is identical in form to that appearing in the non-Boussinesq
equation for 〈ṽ〉,t. Consistent with the averaged tracer equation, we interpret the
averaged velocity field used in the Boussinesq momentum equation as 〈ṽ〉, which
is distinct from 〈v〉.

6.7 Summary of the averaged equations

We now summarize the averaged equations. First, mass conservation for a fluid
parcel and for a vertical column of fluid is given by

〈ρ〉,t + ρo∇ · 〈ṽ〉 = 0 (6.82)
(

D∗ 〈ρ〉z
)

,t
= −ρo∇ · 〈Ũ〉+ ρo q̃∗w. (6.83)

For the Boussinesq fluid, volume conservation for the parcel and column are given
by

∇ · 〈ṽ〉 = 0 (6.84)
η∗,t = −∇ · 〈Ũ〉+ q̃∗w. (6.85)

The surface and bottom kinematic boundary conditions for the non-Boussinesq
fluid are

〈ρ〉 η∗,t + ρo 〈ũ〉 · ∇η∗ = ρo 〈w̃〉+ ρo q̃∗w at z = η∗ (6.86)
〈ũ〉 · ∇H + 〈w̃〉 = 0 at z = −H (6.87)

and for the Boussinesq fluid we have

η∗,t + 〈ũ〉 · ∇η∗ = 〈w̃〉+ q̃∗w at z = η∗ (6.88)
〈ũ〉 · ∇H + 〈w̃〉 = 0 at z = −H. (6.89)

The tracer budget for the non-Boussinesq fluid is

(〈ρ〉 〈C〉ρ),t + ρo∇ · (〈ṽ〉 〈C〉ρ) = −ρo∇ · 〈F̃sgs〉+ 〈ρ〉〈S〉ρ (6.90)

and for the non-Boussinesq fluid

∂t 〈C〉ρ +∇ · (〈ṽ〉〈C〉ρ) = −∇ · 〈F̃sgs〉+ 〈S〉ρ. (6.91)

Finally, the non-Boussinesq momentum budget is

〈ṽ〉,t +∇ · (〈v〉ρ 〈ṽ〉) + 〈M̃〉 ẑ ∧ 〈v〉ρ

= −(〈ρ〉/ρo) g ẑ− f ẑ ∧ 〈ṽ〉 −∇(〈p〉/ρo) + 〈F̃(v)
sgs〉 (6.92)
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whereas the Boussinesq budget is

〈ṽ〉,t +∇ · (〈ṽ〉 〈ṽ〉) + 〈M̃〉 ẑ ∧ 〈ṽ〉 =

− (〈ρ〉/ρo) g ẑ− f ẑ ∧ 〈ṽ〉 −∇(〈p〉/ρo) + 〈F̃(v)
sgs〉. (6.93)

Recall that 〈ṽ〉 = 〈v〉ρ for a Boussinesq fluid, whereas ρo 〈ṽ〉 = 〈ρ〉 〈v〉ρ for the
non-Boussinesq case. In the tracer equation, the SGS flux term is given by

ρ Fsgs = ρC′ρ v′ρ
≡ ρo F̃sgs

(6.94)

which dominates the molecular diffusion flux. The friction vector likewise incor-
porates SGS turbulence terms

ρ F(v)
sgs = ∇ · (ρ v′ρ v′ρ) + ẑ ∧ ρM′

ρ v′ρ

≡ ρo F̃(v)
sgs .

(6.95)

The averaged equations have the same mathematical form as the unaveraged
equations given in Section 6.2. Precisely, the mapping between unaveraged and
averaged fields is given by

ρ→ 〈ρ〉 (6.96)
p→ 〈p〉 (6.97)
v→ 〈v〉ρ (6.98)
ṽ→ 〈ṽ〉 (6.99)
C→ 〈C〉ρ (6.100)
F̃→ 〈F̃sgs〉 (6.101)
S → 〈S〉ρ (6.102)

F̃(v) → 〈F̃(v)
sgs〉 (6.103)

η→ η∗ (6.104)
q̃w → q̃∗w. (6.105)

This mapping is very useful for purposes of extending properties of the unaveraged
system to the averaged system, such as the energetic balances discussed in Chapter
4.

6.8 Mapping to ocean model variables

Having established a set of self-consistent averaged equations, we are ready to
write down the equations to be discretized in the numerical model. As discussed in
Section 6.1.2, discretization is applied to the averaged continuous equations, which
are written down in this section in a bit more tidy manner than in the previous
section.

First, the density variable to be discretized by the ocean model is the Eulerian
mean density

〈ρ〉 → ρmodel. (6.106)
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Again, this is the in situ density used for the mass continuity equation. It is gen-
erally distinct from potential density described in Section 4.8. At this point the
“model” suffix refers to the continuous ocean model, since no discretization has yet
occured. Through the hydrostatic approximation, 〈ρ〉 → ρmodel leads to

〈p〉 → pmodel. (6.107)

As argued in Section 6.3, maintaining a tidy form of the averaged continu-
ity equation motivates our discretizing 〈ṽ〉, instead of the conventional 〈v〉. The
distinction is nontrivial for both non-Boussinesq and Boussinesq ocean models.
Hence, we make the correspondence

〈ṽ〉 → vmodel. (6.108)

Analogously, we choose to use 〈C〉ρ in our model, instead of the conventional 〈C〉

〈C〉ρ → Cmodel. (6.109)

Again, the distinction between 〈C〉ρ and 〈C〉 is nontrivial for both non-Boussinesq
and Boussinesq ocean models. Finally, the surface height in the ocean model corre-
sponds to the modified mean surface height η∗ described in Section 6.4.2

η∗ → ηmodel, (6.110)

as will the modified mean surface fresh water flux

q̃∗w → (qw)model. (6.111)

These mappings lead to the following equations to be discretized in the non-
Boussinesq ocean model (dropping the “model” subscript for brevity)

ρ,t + ρo∇ · v = 0 (6.112)
(Dρz),t = −ρo∇ ·U + ρo qw (6.113)

v,t +∇ · [(ρo/ρ) v v] + (ρo/ρ)M ẑ ∧ v =

− (ρ/ρo) g ẑ− f ẑ ∧ v−∇(p/ρo) + F(v) (6.114)
(ρC),t + ρo∇ · (v C) = −ρo∇ · F + ρ S , (6.115)

where we also made the correspondence

〈F̃sgs〉 → Fmodel (6.116)

〈S〉ρ → Smodel (6.117)

〈F̃(v)
sgs〉 → F(v)

model. (6.118)

Surface and bottom kinematic boundary conditions are set according to

ρ η,t + ρo u · ∇η = ρo w + ρo qw at z = η (6.119)
u · ∇H + w = 0 at z = −H (6.120)

The mapping from unaveraged to averaged fields, and then from averaged to model
fields, is summarized in Table 6.1. This table is the key result from this chapter.
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Unaveraged Averaged Model Model Discrete
ρ 〈ρ〉 ρmodel ρ

p 〈p〉 pmodel p
ṽ 〈ṽ〉 vmodel v
v 〈v〉ρ ρmodel vρmodel = ρo vmodel ρ vρ = ρo v
η η∗ ηmodel η

q̃w q̃∗w (qw)model qw

C 〈C〉ρ Cmodel C
S 〈S〉ρ Smodel S
F̃ 〈F̃sgs〉 Fmodel F

F̃(v) 〈F̃(v)
sgs〉 F(v)

model F(v)

Table 6.1: Correspondence between unaveraged continuous fields, ensemble aver-
aged continuous fields, continuous model fields, and discrete model fields. This
table will be referred to throughout this book.

The continuous model equations presented above are identical in form to the
continuous unaveraged non-Boussinesq equations summarized in Section 6.2. Al-
though in the end somewhat trivial (i.e., what a round-about way to get back to the
same equations!), the intermediate steps reveal a nontrivial interpretation of the
fields discretized in a z-coordinate ocean model.

The Boussinesq model equations arise by setting ρmodel → ρo, except when
multiplying gravity

∇ · v = 0 (6.121)
η,t = −∇ ·U + qw (6.122)

v,t +∇ · (v v) +M ẑ ∧ v = −(ρ/ρo) g ẑ− f ẑ ∧ v−∇(p/ρo) + F(v) (6.123)
C,t +∇ · (v C) = −∇ · F + S (6.124)

with the surface and bottom kinematic boundary conditions

η,t + u · ∇η = w + qw at z = η (6.125)
u · ∇H + w = 0 at z = −H. (6.126)

As emphasized by McDougall et al. (2002a) and Greatbatch et al. (2001), upon mak-
ing the hydrostatic approximation, these equations for the Boussinesq ocean model
are identical to those integrated by traditional Boussinesq z-coordinate ocean mod-
els, with the exception of details that have been absorbed by the turbulence tracer
and momentum fluxes F and F(v). Additionally, McDougall et al. (2002a) argue that
the interpretation of model fields as proposed here allows for the Boussinesq equa-
tions to be far more accurate than the alternative interpretation. Hence, for this rea-
son, and for reasons of mathematical elegance, we prefer the interpretation summa-
rized by Table 6.1 for the variables carried by the Boussinesq and non-Boussinesq
versions of z-coordinate ocean climate models.
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6.9 Discretization basics

We have spent the bulk of this chapter motivating an interpretation of the contin-
uous equations discretely represented by a z-coordinate ocean model. It is now
appropriate to consider how to discretize the continuous model equations. This
book is short on pedagogical discussions of general discretization techniques, since
the computational fluids literature has many examples (e.g., Haltiner and Williams
(1980) and Durran (1999)). However, for completeness, we introduce here some of
the issues, preserving more detail for later chapters.

The discretization of continuous equations often starts by integrating these equa-
tions over the finite space-time lattice onto which the equations are to be numeri-
cally integrated. For example, introduce a space-time averaged field via the aver-
aging operator

ψ
x,t =

1
∆V

1
∆t

∆V/2
∫

−∆V/2

dx

∆t/2
∫

−∆t/2

dtψ(x, y, z, t), (6.127)

where ∆V = ∆x∆y∆z is the volume of the lattice grid cell, and dx = dx dy dz is
the infinitesimal volume element. If the cell volume is constant in space and time,
then such averaging leads to the discrete expression for a time derivative operator

ψ,t
x,t =

ψ
x(t + ∆t/2)−ψx(t− ∆t/2)

∆t
, (6.128)

and similar expressions for spatial derivatives. Other averaging operators exist
whereby a kernal is used to weight the averaged field, with the present example
employing a “box-car” kernal. In either approach, the numerical model fields are
interpreted as discrete representations of continuous averages of the continuous
fields. This is the finite-volume approach. Another approach interprets the numeri-
cal model fields as point-wise discrete representations of the continuous fields, thus
prompting Taylor series methods for approximating derivative operators.

Most z-coordinate models do not strictly adhere to either one interpretation.
That is, there is no attempt to provide a uniform method to transfer the continuous
equations to the lattice. Doing so would restrict the freedom of choosing various
discretizations of operators. However, such ambiguity in transferring the ensem-
ble averaged continuous equations to the lattice does not introduce ambiguity into
how to interpret the fundamental continuous model equations. The interpretation
proposed in this chapter, and summarized in Table 6.1, remains basic to all dis-
cretization methods used in z-coordinate ocean models.

In general, discretization breaks the symmetries maintained by the continuous
partial differential equations. Consequently, the discrete equations can have solu-
tions whose qualitative and/or quantitative behaviour is not reflective of the con-
tinuous equations. It is the task of the numerical algorithm developer to ensure
that any mis-representation of the continuous system is of negligible physical con-
sequence. Otherwise, the numerical model is of little use for physical modeling.
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This chapter presents a set of kinematic tools and applies them to an ensemble of
isentropic Boussinesq fluid parcels. This ensemble is useful when formulating the
mesoscale eddy problem in the ocean interior, since these eddies are well approx-
imated by ideal fluid flow. Much of the material in this chapter requires patience
and persistence from the reader. It certainly required such from the author.

For the purposes of this chapter, isentropic transport of a parcel is frictionless,
adiabatic, and isohaline. Hence, we do not consider the special case of heating that
compensates salt diffusion so that a fluid parcel’s entropy (or potential density)
remains constant.

7.1 The mesoscale eddy parameterization problem

Understanding and parameterizing mesoscale eddies in the ocean remains a topic
of intense research within the physical oceanography community. The space scale
characterizing the mesoscale eddies is largely determined by the first baroclinic
Rossby radius (e.g., Stammer (1997a), Smith and Vallis (2002)), and the time scale is
on the order of a few weeks to months. The space scale is smaller than the level of
grid resolution in typical global ocean climate models, thus necessitating parame-
terizations aiming to capture eddy effects on the resolved scale flow. This param-
eterization problem is important due to the nontrivial effects that eddies have on
setting tracer distributions and water mass properties, especially within the South-
ern Ocean. Additionally, and quite uncomfortably, ocean climate models exhibit a
high degree of sensitivity to their sub-grid-scale operators. For these reasons, many
research efforts have over the past two decades focused on improving the mathe-
matical, physical, and numerical integrity of the sub-grid scale operators aiming to
parameterize the eddies.

7.1.1 Posing the parameterization problem

The mesoscale eddy problem has typically been posed in the context of ideal Boussi-
nesq fluid dynamics. We follow this route here. Notable further simplifications
to the dynamical equations are rendered via the quasi-geostrophic approximation,
and such has proven useful for understanding eddy mechanisms and scalings.
Given our focus on ideal flow, we are not concerned with processes that alter the
entropy of a fluid parcel, such as those associated with the convergence of mixing
fluxes, or sources due to nonlinear effects in the equation of state for seawater den-
sity. Generalizations are straightforward, as discussed by McIntosh and McDougall
(1996) and McDougall and McIntosh (2001), whereby potential density and its as-
sociated specific thickness is translated into locally referenced potential density, or
neutral density, and its associated specific thickness.

The parameterization problem involves many considerations, such as numeri-
cal constraints (e.g., dissipation operators are needed for numerical stability), phys-
ical considerations (e.g., mesoscale eddies mix predominantly along neutral direc-
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tions), physical postulates (e.g., eddies homogenize potential vorticity), and statis-
tical postulates (e.g., eddies maximize entropy). Different theoretical approaches
have been tried with little consensus in the community as to what is optimal both
theoretically and from the perspective of “good” modeling practice, largely defined
as a practice that leads to unambiguous inprovement in model realism. Griffies
et al. (2000a) provides a review with numerous references.

In this chapter, our purpose is modest in the sense that we do not attempt to
establish a dynamical theory leading to a parameterization scheme. Instead, we
concern ourselves only with volume and tracer budgets and focus on basic kine-
matic issues important for interpreting simulations. These considerations provide
a starting point for framing the mesoscale eddy parameterization problem, espe-
cially when posed in z-coordinate models, yet they are not sufficient. For more
complete treatments, refer to some of the many references given in Griffies et al.
(2000a).

7.1.2 Averaging at fixed depth versus at fixed neutral density

Chapter 6 provides a method to systematically map between ocean model vari-
ables and in situ density weighted ensemble averaged fields (e.g., Section 6.8). The
ensemble average from that chapter takes place at a fixed point in space, and in
particular at a fixed depth.

A basic property of mesoscale eddies is that they stir and mix properties pre-
dominantly parallel to neutral directions. It is important to build into the math-
ematical formulation of the mesoscale eddy closure problem this basic empirical
fact. Consequently, when averaging over realizations of mesoscale eddies for the
purpose of garnering a parameterization, we are prompted to situate ourselves at
a horizontal position that maintains a constant locally referenced potential density.
Doing so leads to specific thickness weighted means, as discussed later in this chap-
ter.

We therefore find it convenient to distinguish the two forms of ensemble av-
eraging: this chapter focuses on averaging over the mesoscale whereas Chapter
6 averages over smaller scales. An alternative is to average over the mesoscale
and small scales at once, thus combining the in situ density weighted averaging of
Chapter 6 with the specific thickness weighted means of this chapter. Greatbatch
and McDougall (2002) pursue that approach, which turns out to be a straightfor-
ward exercise in the techniques introduced here and in Chapter 6.

7.1.3 Good modeling practice

A practical outcome of this chapter is a kinematic interpretation for sub-grid scale
transport operators in the tracer equation integrated by models not resolving mesoscale
eddies. In Chapter 11, it is argued that the neutral transport operators, motivated
from eddy closure ideas, are useful even for regimes where the mesoscale eddies are
explicitly resolved. The main reason is that alternative transport operators that may
be appropriate at fine resolution tend to introduce unphysically large levels of spu-
rious mixing between water masses (Roberts and Marshall (1998) and Griffies et al.
(2000b)). Hence, from this perspective, the operators motivated from the mesoscale
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parameterization problem represent good modeling practice for all resolutions. We
further discuss these neutral transport operators in Chapters 11–13 and 14.

7.2 Advection and skewsion

There are two complementary ways of interpreting the transport operator used to
reversibly stir a tracer. One can either consider the convergence of an advective
flux, thus leading to advection, or the convergence of a skew-flux, thus leading to
skewsion. Our focus in this chapter is on skewsion as it lends itself to a more stream-
lined theoretical development, and it provides a more robust numerical foundation
(see Chapters 11–13 and 14 for numerical developments).

7.2.1 The vector streamfunction

Consider an arbitrary three-dimensional divergence-free velocity field

∇ · V = 0. (7.1)

The divergence-free condition represents a diagnostic relation, or constraint, that
reduces the functional degrees of freedom for the velocity field from three to two.
This constraint can be satisfied identically by introducing a vector streamfunction

V = ∇ ∧ Υ. (7.2)

The vector streamfunction Υ is not completely specified by this relation, since the
equally valid streamfunction

Υ′ = Υ+∇λ (7.3)

corresponds to the same velocity field V . The arbitrary scalar function λ is known as
a gauge function, and the freedom to modify the vector streamfunction through the
addition of λ is known as gauge freedom. A similar symmetry is present in Maxwell’s
equations of electrodynamics (e.g., Jackson (1975)).

7.2.2 Advective and skew fluxes

The advective tracer flux
F(a) = V C = (∇ ∧ Υ) C (7.4)

can be related to a skew flux

F(s) = −∇C ∧ Υ = F(a) − F(r) (7.5)

through exploitation of the identity

V C = (∇ ∧ Υ) C = −∇C ∧ Υ+∇ ∧ (CΥ). (7.6)

F(s) represents a skew flux, which is a flux defined such that it is directed perpen-
dicular to the tracer gradient F(s) · ∇C = 0. Since the rotational flux

F(r) = ∇ ∧ (CΥ) (7.7)
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has a vanishing divergence, the divergence of the skew and advective fluxes is iden-
tical

∇ · F(s) = ∇ · F(a). (7.8)

Hence, if these fluxes enter into the evolution of a tracer, one may choose to use the
skew flux or advective flux in describing the evolution. That is,

C,t +∇ · (v C) = −∇ · (V C)
= ∇ · (∇C ∧ Υ). (7.9)

It is often convenient to introduce the anti-symmetric transport tensor

Fm
(s) = −εmnp C,n Υp = −Amn C,n (7.10)

where Amn represents a reorganization of the vector streamfunction

Amn = εmnp Υp =





0 Υ3 −Υ2
−Υ3 0 Υ1
Υ2 −Υ1 0



 , (7.11)

and εmnp is the totally anti-symmetric Levi-Civita tensor defined in Section 18.12.
Given the gauge freedom introduced in Section 7.2.1, we can always choose to spec-
ify a gauge so that

Υ3 ≡ 0. (7.12)

This gauge is referred to as the vertical gauge and will be used in the following.

7.2.3 Complementary aspects of the fluxes

We consider here two aspects of the advective and skew tracer fluxes which turn
out to be complementary to one another. First, since the advective flux is directly
proportional to the velocity, this flux vanishes when the velocity vanishes. In con-
trast, a skew flux vanishes when the tracer gradient vanishes, as occurs for diffusive
tracer fluxes.

Second, the orientation of the advective flux V C is determined by the velocity
field, which is oriented according to the trajectories of fluid parcels. This orienta-
tion is the same for all tracers. The fluid parcels carry along with them a partic-
ular amount of tracer mass (ρ dV) C, hence leading to the usual notion of a flux
representing the passage of a quantity of matter across an area per unit time. Fur-
thermore, it is the component of the velocity (and hence the advective tracer flux)
aligned parallel to gradients of the tracer that creates local changes in the tracer
concentration. We see this property from the advection equation

C,t = −V · ∇C. (7.13)

Hence, an advective flux of tracer in an adiabatic flow is not generally oriented
parallel to surfaces of constant tracer. Indeed, if it were, then the tracer field would
be locally static since then V ·∇C = 0. This statement holds for all tracers, including
potential density.
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As a complement to the advective flux, the skew tracer flux is directed along
lines of constant tracer. That is, the skew flux is neither up-gradient nor down-
gradient since

∇C · F(s) = −∇C · (∇C ∧ Υ) = 0. (7.14)

Hence, orientation of the skew flux is directly tied to the tracer field, with each
tracer yielding a generally different orientation, all parallel to the respective tracer
isolines. This property does not allow for the interpretation of a skew flux in terms
of the passage of a quantity of matter across an area per unit time.

7.3 Volume conservation in an isentropic ensemble

We now consider the reversible stirring of volume in an ideal stratified Boussinesq
fluid. Stirring by ocean baroclinic eddies provides a good approximation to such
ideal situations. Over long space and time scales, mesoscale eddy stirring can be
considered chaotic, which motivates a stochastic perspective in which an ensemble
of eddies is considered. The goal is to describe the ensemble mean properties of the
fluid, with this section focusing on the kinematics of parcel rearrangement.

In the following, we use the overbar with a density label, ( )
ρ
, to denote the

ensemble mean over an ensemble of fluid parcels, each having the same potential
density ρ, the same horizontal position (x, y), and the same time t. Since the isopyc-
nals are undulating, each ensemble member has a vertical position that is generally
distinct from the fixed depth z. When the context is clear, we often drop the (x, y, t)
dependence in order to highlight the dependence on potential density and/or ver-
tical position. Averaging over parcels maintaining the same potential density ρ is
often termed isopycnal averaging in the literature.

7.3.1 Two perspectives on volume conservation

Consider a stably stratified ideal Boussinesq fluid. Isopycnal coordinates (x, y,ρ, t)
introduced in Section 5.9.4 are ideally suited to describe the dynamics of this fluid.
In these coordinates, the volume of a fluid parcel is written

dV = dx dy dz = dx dy z,ρ dρ. (7.15)

Since the specific thickness z,ρ appears quite frequently in the following, it is con-
ventional to introduce the shorthand notation

h = z,ρ. (7.16)

As discussed in Section 5.3.2, specific thickness is the Jacobian of transformation
between geo-potential (x, y, z, t) and isopycnal (x, y,ρ, t) coordinates. For stably
stratified fluids, h is one-signed, hence making the coordinate transformation well
defined. Geometrically, the product h dρ represents the vertical distance, or thick-
ness, between the two infinitesimally close density classes ρ and ρ+ dρ. For an ideal
Boussinesq fluid parcel, material conservation of volume and potential density im-
plies conservation of the product of specific thickness and horizontal area dx dy h,
which leads to the thickness equation

h,t +∇ρ · (h u) = 0, (7.17)
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with u the horizontal velocity field.
An Eulerian z-coordinate description of the reversible rearrangement of Boussi-

nesq parcels is rendered via a combination of volume conservation ∇ · v = 0, and
material conservation of potential density Dρ/Dt = 0. When written as a skewsion
process, the natural gauge is the vertical gauge Ψ = U ∧ ẑ introduced in Section
7.2.2 since this gauge only requires the same horizontal velocity field u used with
the isopycnal coordinate description. This gauge has an associated skew flux of
potential density F = −∇ρ ∧Ψ, which leads to the evolution

ρ,t = ∇ · (∇ρ ∧Ψ), (7.18)

where all derivatives are here taken with fixed Eulerian coordinates, and the diver-
gence operator is three-dimensional.

As an aside, we note that Kushner and Held (1999) considered the case with
potential vorticity replacing density and meridional replacing vertical stratification.
As pointed out by Held and Schneider (1999), such a description might also be
relevant for a surface layer of density where vertical density stratification can be
weak yet meridional stratification nonzero. In this case, volume conservation using
isopycnal coordinates is described by the alternate form of the thickness equation

∂t y,ρ + ∂x (y,ρ u) + ∂z (y,ρ w) = 0, (7.19)

where the partial derivatives are still taken along surfaces of constant density. Be-
cause the thickness in this case is only affected by the zonal and vertical velocities,
the natural gauge for a skewsion description is a meridional gauge.

7.3.2 Exact ensemble mean kinematics in isopycnal coordinates

Consider an ensemble of ideal Boussinesq fluid parcels with the same infinitesimal
volume dV = dx dy h dρ, and same potential density ρ. Lacking any other marker,
such as a tracer concentration, the ensemble members are distinguished from one
another by values of their horizontal area dA = dx dy, and their specific thickness
h; that is, their geometric attributes. The ensemble members are assumed to be
stirred by different stochastic realizations of the fluid flow. Since each flow realiza-
tion alters the geometric properties of the parcels, a mean-field description focuses
on the mean of these geometric properties.

In isopycnal coordinates (x, y,ρ, t), the thickness equation is satisfied by each
ensemble member

h,t +∇ρ · (h u) = 0. (7.20)

The ensemble mean over parcels with potential density ρ satisfies

∂t h
ρ

+∇ρ ·
(

h
ρ

uρ + h′ u′
ρ
)

= 0, (7.21)

where primed variables represent deviations from the mean. The mean specific
thickness h

ρ
of parcels with potential density ρ therefore satisfies the conservation

equation
∂t h

ρ
+∇ρ · (h

ρ
û) = 0, (7.22)
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where

û =
h u

ρ

h
ρ

= uρ +
h′ u′

ρ

h
ρ

= uρ + ub

(7.23)

is an effective horizontal velocity. The first equality defines a thickness weighted
averaging operator, and the last equality defines the horizontal bolus velocity ub as
introduced by Rhines (1982). Since each ensemble member is taken from a stably
stratified fluid, the mean specific thickness h

ρ
is single signed and non-vanishing.

The bolus velocity
ub(ρ) = û(ρ)− uρ(ρ) (7.24)

arises from the along-isopycnal correlations between thickness and horizontal ve-
locity.

Quite conveniently, the mean conservation equation (7.22) takes the same form
as the conservation equation (7.20) satisfied by each ensemble member. The key dif-
ference, of course, is that the ensemble mean thickness h

ρ
is stirred by the effective

horizontal velocity û(ρ), whereas the thickness of each ensemble member is stirred
by a randomly different realization of the horizontal velocity u. As emphasized by
Kushner and Held (1999), the simplicity of the resulting mean-field description is
afforded by use of the Lagrangian vertical coordinate ρ.

7.3.3 The non-utility of an Eulerian mean description

Although ρ-coordinates provide a natural description of the isentropic rearrange-
ment of volume, it is useful to understand how to transform to z-coordinates for
purposes such as interpreting results from z-coordinate ocean models.

Let us first illustrate why it is more useful to employ fixed potential density
means (which are Lagrangian in the vertical) instead of fixed depth means (which
are Eulerian). For this purpose, it is sufficient to note that when sitting at a fixed
Eulerian grid point, one measures a mean skew flux Fz that has a nonzero compo-
nent across the mean potential density surface ρz. Here, ( )

z
denotes an Eulerian

average obtained by an observer at a fixed point (x, y, z, t). Precisely, although

F(z) · ∇ρ(z) = 0 (7.25)

for each realization of the isentropic flow, the Eulerian average satisfies

Fz · ∇ρz = −F′ · ∇ρ′z 6= 0. (7.26)

Herein lies the cumbersome nature of the Eulerian perspective: the behaviour of the
Eulerian mean skew flux differs fundamentally from that of each flow realization.
This behaviour of the ensemble mean is in contrast to what we just saw from the
isopycnal description, where the ensemble mean thickness equation has the same
mathematical form as the thickness equation satisfied by each ensemble member.
The problem, of course, is that an average taken at a fixed depth samples members
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from different ensembles defined by different potential densities. That is, the fixed
depth average cannot be an isentropic average, and so it is of little use when aiming
to describe a mean over an isentropic ensemble.

7.3.4 Transformed residual mean (TRM)

To find a more convenient z-coordinate formulation, we follow approaches used by
deSzoeke and Bennett (1993), McIntosh and McDougall (1996), Kushner and Held
(1999), and McDougall and McIntosh (2001). Here, we introduce the displacement
vector in the vertical

ξ = ξ ẑ. (7.27)

This displacement vector is appropriate for the case where we position ourselves
at a point (x, y, t) in a stably stratified fluid and focus on the vertical position of a
parcel with a fixed potential density ρ. That is, we let ξ(x, y,ρ, t) be the deviation
of a potential density surface ρ from its mean vertical position

z(ρ) = zρ(ρ) +ξ(ρ). (7.28)

The ensemble mean of this deviation vanishes

ξ
ρ = 0 (7.29)

by definition.
We now define an isopycnally averaged version of a field Φ by fixing ourselves

at (x, y,ρ, t) and computing the ensemble mean. In symbols, we measure the aver-
age Φ(x, y, zρ +ξ , t)

ρ
. The question arises how does Φρ correspond to fields mea-

sured at the mean depth zρ of the isopycnal? This question leads to our defining a
modified mean field satisfying∗

˜Φ(x, y, zρ, t) = Φ(x, y, zρ +ξ , t)
ρ
. (7.30)

That is, the modified mean field† ˜Φ, when measured at the mean depth zρ, is equal
to the isopycnally averaged fieldΦρ. A particularly important modified mean field
is the potential density

ρ̃(x, y, zρ, t) = ρ(x, y, zρ +ξ , t)
ρ
. (7.31)

Since the average is defined over constant ρ, we can remove the average operation
to render the equality

ρ̃(x, y, zρ, t) = ρ(x, y, zρ +ξ , t). (7.32)

In words, this equality says that the modified mean density ρ̃, when measured at
the mean depth zρ, is equal to the density ρ of the ensemble members. General-
izations of the modified mean potential density to a nonlinear equation of state

∗A similar equality arises when considering Generalized Lagrangian Mean fields (Andrews and
McIntyre (1978)).

†Do not confuse the tilde symbol used here for modified mean field with that used in Chapter 18
for one-forms. The meaning is completely distinct.
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lead to a modified mean neutral density (see McDougall and McIntosh (2001) for
discussion).

The relation ρ̃(zρ) = ρ(zρ + ξ) implies that ρ̃ is the functional inverse of the
mean depth zρ of the ρ potential density surface (deSzoeke and Bennett (1993)).
From equation (7.30), it follows that

˜Φ(x, y, zρ, t) = Φ(x, t, zρ +ξ , t)
ρ

= Φ
ρ(x, y, ρ̃, t). (7.33)

This is an important relation between an ensemble mean field defined at the modi-
fied mean potential density surface (right hand side), and the modified mean field
defined at the mean depth of the isopycnal (left hand side). In an analogous fashion,
we define a relation between a thickness weighted field

̂Φ =
hΦ

ρ

h
ρ , (7.34)

defined as a function of density ρ, and a transformed residual mean (TRM) field Φ#

defined as a function of the mean depth (McDougall and McIntosh (2001))

̂Φ(x, y, ρ̃, t) = Φ
#(x, y, zρ, t). (7.35)

Without thickness weighting, such as when h =constant for all ensemble members,
the TRM field Φ#(zρ) reduces to the modified mean field ˜Φ(zρ). Generally, these
fields are distinct.

7.3.5 Exact ensemble mean kinematics in z-coordinates

We now apply the previous formalism to garner an exact z-coordinate description
of the isentropic ensemble. For this purpose, we interpret a vertical position z as the
ensemble mean vertical position zρ of a potential density surface. Mean fields de-
fined at the fixed vertical position correspond to either modified mean fields when
not thickness weighted (equation (7.33)), or TRM fields when thickness weighted
(equation 7.35)). This interpretation of the vertical position, and fields defined at a
vertical position, will be transferred to the discrete Eulerian lattice of a coarse reso-
lution z-coordinate ocean model (see Section 7.5). Such an interpretation of coarse
resolution z-models was originally proposed by McDougall and McIntosh (2001).

7.3.5.1 The total transport and the quasi-Stokes transport

As described using isopycnal coordinates, the mean specific thickness h
ρ

of the
ρ surface evolves via equation (7.22) through the stirring effects of the effective
horizontal velocity û. This velocity is thickness weighted, as defined by equation
(7.23). According to our definition of a TRM field given by equation (7.35), we have
an associated horizontal TRM velocity

û(x, y, ρ̃, t) = u#(x, y, zρ, t). (7.36)

So far, we have needed only the horizontal velocity components, either from
the thickness weighted or TRM velocity. When working in z-coordinate mod-
els, it is useful to see how these velocities relate to a three-dimensional velocity.
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As we are concerned with Boussinesq flow, a three-dimensional velocity used to
transport properties is preferably non-divergent. Given the skewsion formalism of
Section 7.2.1, we associate the horizontal TRM velocity components with a three-
dimensional non-divergent TRM velocity field

v# = ∇∧Ψ#
, (7.37)

where Ψ
#

is a vector streamfunction.
The definition of v# is shown to be reasonable a posteriori based on the following

interpretation of the streamfunction Ψ
#
. Choosing the vertical gauge (Section 7.2.2)

allows us to write

Ψ
#(zρ) =

zρ
∫

−H

(u#(z) ∧ ẑ) dz ≡ U#(zρ) ∧ ẑ, (7.38)

where we introduced the mean horizontal transport U#(zρ). Vertical integration is
over a column of the ocean from the bottom z = −H to the ensemble mean depth
z = zρ of the isopycnal ρ. We now show that U#(zρ) is the ensemble mean transport
of fluid beneath the potential density surface ρ = ρ̃. In so doing, we familiarize
ourselves with the formalism in the process of providing a kinematic interpretation
for the transport and justifying our choice for v#.

For these purposes, start by noting that

U#(zρ) =
zρ
∫

−H

u#(z) dz

=
ρ̃(zρ)
∫

ρ(−H)

û(σ) h
σ

dσ .

(7.39)

This relation follows from a change in variables from depth to density using dz =
h
σ

dσ , and by noting the inverse relation between zρ and ρ̃(zρ). We also used equa-
tion (7.36) relating the horizontal thickness weighted velocity û(σ), which is a func-
tion of density, and the TRM velocity u#(zρ), which is a function of depth. Next,
introduce definition (7.23) for the thickness weighted velocity to yield

U#(zρ) =
ρ̃(zρ)
∫

ρ(−H)

u h
σ

dσ

=
ρ(zρ+ξ)
∫

ρ(−H)

u h
σ

dσ ,

(7.40)

where the second step follows from the conservation property (7.32) satisfied by
the modified mean potential density. The integrand u h

σ
dσ is the ensemble mean

of the horizontal transport passing within the infinitesimal density layer between
σ and σ + dσ . It is vertically integrated over each of the continuum of potential
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densities ρ ≤ σ ≤ ρ(−H), thus yielding the ensemble mean transport of fluid
beneath the potential density surface ρ = ρ̃. This is the result we aimed to show.

Transferring the expression (7.40) to depth coordinates leads to the expression

U#(zρ) =
zρ+ξ
∫

−H

u dz. (7.41)

In words, without the average operation, this expression represents a vertical inte-
gral of the horizontal transport, where the vertical integral extends from the ocean
bottom z = −H to a depth z = zρ + ξ determined by one of the members of an
ensemble whose members all have potential density ρ = ρ̃. With the average oper-
ation, we compute the mean of this vertical integral over all the members of the ρ
ensemble.

To help with our interpretation of the transport U#(zρ), we split the vertical
integral into two parts

U#(zρ) =
zρ
∫

−H

u dz +
zρ+ξ
∫

zρ

u dz. (7.42)

The first expression represents the ensemble mean horizontal transport between
the bottom z = −H and the fixed depth z = zρ. Hence, it can be interpreted in the
usual Eulerian average manner. The second term is the ensemble mean transport
between the mean depth z = zρ of the ρ isopycnal, and the depth z = zρ +ξ of the
various ensemble members. As a shorthand, we write this split as

U#(zρ) = U(zρ) + Uqs(zρ). (7.43)

Following McDougall and McIntosh (2001), we call

Uqs(zρ) ≡
zρ+ξ
∫

zρ

u dz (7.44)

the quasi-Stokes transport for the ρ isopycnal. This transport arises from eddy effects
accounting for differences between the Eulerian mean transport U(zρ) and the TRM
transport U#(zρ). Such is characteristic of other forms of Stokes transport, which
are defined between Eulerian and Lagrangian means (e.g., Andrews and McIntyre
(1978) and Plumb (1979)). Note that as the surface or bottom of the ocean is ap-
proached, the quasi-Stokes transport vanishes since there is no more fluid to be
transported at such boundaries. McDougall and McIntosh (2001) emphasize this
point (see their Section 8) as it provides an unambiguous statement regarding the
boundary conditions to be used for parameterizations of the quasi-Stokes transport
(see Section 7.5).

7.3.5.2 Evolution of modified mean density

Following the skewsion formulation from Section 7.2, at the mean depth z = zρ the
streamfunction Ψ

#
defines an effective skew flux of potential density ρ = ρ̃ given
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by

F# = −∇ρ̃ ∧Ψ#
. (7.45)

Using Ψ
# = U# ∧ ẑ, it is often useful to write this expression in one of the following

forms

F# = −U# ∂zρ̃+ ẑ U# · ∇zρ̃

= −(U# + ẑ S ·U#) ∂zρ̃,
(7.46)

where

S = −
(

∇zρ̃

∂zρ̃

)

(7.47)

is the slope of the modified mean density field, and ∇z = (∂x, ∂y, 0) is the horizon-
tal gradient operator taken with constant depth z = zρ. The convergence of the
effective skew flux leads to a stirring of the modified mean density ρ̃ at the mean
depth z = zρ

ρ̃,t = ∇ · (∇ρ̃ ∧Ψ#). (7.48)

This equation represents an exact z-coordinate specification of the evolution of the
modified mean density due to stirring by the mean eddies. It corresponds directly
to the evolution equation (7.18) satisfied at depth z by a single member of the en-
semble. We contrast this elegant correspondence between unaveraged and aver-
aged stirring processes with the lack of correspondence seen in the Eulerian de-
scription in Section 7.3.3.

7.3.6 Approximate ensemble mean kinematics in z-coordinates

Equation (7.48) represents an exact z-coordinate description of the stirring of mod-
ified mean potential density. However, when working in a discrete z-coordinate
model, all that is available is Eulerian information. The Lagrangian information
used to realize this exact description must be approximated.

As mentioned at the start of Section 7.3.5, we interpret values of potential den-
sity carried by a coarsely resolved z-model, at fixed model grid depths z, as the
modified mean potential density ρ̃(z). Correspondingly, we associate model depth
levels with the mean depth of the potential density surface: z = zρ. This inter-
pretation is in contrast to the usual association of the coarse model’s Eulerian mean
potential density ρz with the model potential density. The latter interpretation is not
useful for coarse resolution z-models, as indicated by the discussion surrounding
equation (7.26).

The approximation problem for z-coordinate models is a problem of how to
compute the quasi-Stokes transport Uqs(z), where again z = zρ is assumed through-
out this section. To do so in a z-model, the TRM transport is expanded in a Taylor
series about the fixed model depth z via

U#(z) =
∫ z+ξ

−H
u(s) ds

≈ U(z) + uξ z +
1
2

∂zuξ2z
,

(7.49)
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where neglected terms are third order in deviation quantities. Note that the av-
erages are taken at fixed vertical position, which accords with our taking a Taylor
series about the depth z = zρ.

The averages in equation (7.49) are interpreted as follows. The first term is the
usual Eulerian mean horizontal transport passing beneath the depth z. The second
term, u(z)ξ , which is first order in deviation ξ , is the horizontal velocity evaluated
at the mean depth z = zρ multiplied by the deviation ξ of the potential density
surface from its mean depth, all averaged at fixed depth. An Eulerian split of the
horizontal velocity u(z) into its Eulerian mean uz and deviation u′(z) leads to the
correlation

uξ z = u′ξ
z
. (7.50)

For the second order term, similar considerations lead to

∂zuξ2z ≈ ∂zuzξ2z
(7.51)

where neglected terms are third order and higher. Combining these relations leads
to the second order accurate expression

U#(z) ≈ U(z) + u′ξ
z + (1/2)ξ2z

∂zuz, (7.52)

which can also be written in the suggestive form

U#(z) ≈ U(z) +ξ (1 + (1/2)ξ ∂z) u
z
. (7.53)

What remains is to determine the deviation ξ of the isopycnal in terms of fields
at constant depth. For this purpose, use the relation (7.32) to render

ρ̃(z) = ρ(z +ξ)

= ρ(z) + ∂zρ(z)ξ +
1
2

∂zzρ(z)ξ2,
(7.54)

where terms of third and higher order were neglected. Subtracting the Eulerian
mean of equation (7.54) from the un-averaged equation (7.54), and noting that ρ̃ is
already a mean-field, leads to the second order accurate expression for the deviation

ξ = −ρ′(z)/∂zρ
z, (7.55)

where
ρ(z) = ρz + ρ′(z). (7.56)

To within the same order, the deviation can be written

ξ = −ρ′(z)/∂zρ̃(z), (7.57)

which is more useful for applications in z-models since coarse versions of such
models carry ρ̃ rather than ρ. Substituting the deviation (7.57) into the approximate
expression (7.49) for the effective transport yields an approximate expression for
the quasi-Stokes transport

Uqs ≈ −u′ ρ′

∂zρ̃
+
φ ∂zu
(∂zρ̃)2 , (7.58)
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where
φ(z) =

1
2

(ρ′(z))2 (7.59)

is half the mean density variance, and recall that all depths are set to z = zρ.
Substituting the deviation (7.57) into the approximate expression (7.54) yields,

to within terms of third order, the relation

ρ̃(z) ≈ ρ(z)− ∂z

(

φ

∂zρ

)

. (7.60)

As for the quasi-Stokes transport, the modified mean density and Eulerian mean
density, when evaluated at the same depth, differ by terms that are second order in
eddy amplitude.

7.4 Ensemble mean tracer equation

In this section, we attach a tracer quantity to the ideal Boussinesq parcel and deter-
mine a mean field description for the tracer. The effects of the eddies have both a
reversible stirring component and an irreversible mixing component. Much in this
section follows from Smith (1999) and McDougall and McIntosh (2001).

7.4.1 Thickness weighted means

Equation (7.23) introduced a specific thickness weighted mean operator, which will
prove to be quite useful when considering the mean tracer equation. In general, for
any field Φ associated with a potential density layer ρ, define the decomposition

Φ(ρ) = ̂Φ(ρ) +Φ′′(ρ) =
hΦ

ρ

h
ρ +Φ′′. (7.61)

The quantity ̂Φ is referred to as the mean thickness weighted field. It follows by
definition that

hΦ′′
ρ

= 0. (7.62)

7.4.2 Mean thickness weighted tracer equation

When attaching a tracer value to fluid parcels, each ensemble member satisfies the
isopycnal tracer equation

(∂t + u · ∇ρ) C = 0. (7.63)

Combining the tracer and thickness equations leads to the thickness weighted tracer
equation

(h C),t +∇ρ · (h u C) = 0. (7.64)

We pause here to comment on an interpretation of this equation in relation to the
orientation of the advective flux. Using isopycnal coordinates, the adiabatic evolu-
tion of thickness weighted tracer occurs via the isopycnally oriented convergence
of the thickness weighted horizontal advective flux h u C. As this flux is two-
dimensional and proportional to u, it is horizontally oriented. Hence, it is not
generally oriented parallel to isopycnal surfaces. We made this point in Section
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7.2.3 when discussing the complementary aspects of advective and skew fluxes of
tracer as described using z-coordinates.

Returning now to the problem of describing the ensemble mean tracer equa-
tion in isopycnal coordinates, we decompose the tracer and velocity field into their
thickness weighted average and deviation to render

[h ( ̂C + C′′)],t +∇ · [h (û + u′′) ( ̂C + C′′)] = 0. (7.65)

Taking an ensemble average over parcels with the same potential density, and using
equation (7.62), renders the mean thickness weighted tracer equation

(h
ρ
̂C),t +∇ρ · (h

ρ
̂C û) = −∇ρ · (h C′′ u′′

ρ
). (7.66)

With
h C′′ u′′

ρ
= h

ρ
̂C′′ u′′, (7.67)

and ∂th
ρ

+∇ρ · (h
ρ

û) = 0, we have the evolution equation for the mean thickness
weighted tracer concentration

(∂t + û · ∇ρ) ̂C = − 1

h
ρ ∇ρ · (h

ρ
̂C′′ u′′). (7.68)

7.4.3 Tracer mixing tensor

The correlation term on the right hand side of the mean thickness weighted tracer
equation (7.68) is typically parameterized via a mixing tensor

̂C′′ u′′ = −J · ∇ρ ̂C, (7.69)

which leads to the evolution equation

(∂t + û · ∇ρ) ̂C =
1

h
ρ ∇ρ · (h

ρ
J · ∇ρ ̂C). (7.70)

The ocean modeling community has traditionally assumed that the mixing ten-
sor J is a positive-definite and symmetric diffusion tensor, which is also assumed
isotropic in the isopycnal plane. It corresponds to the isopycnal coordinate ver-
sion of the small angle diffusion tensor of Redi (1982). However, one can generally
expect J to have both a symmetric and an anti-symmetric component, where the
anti-symmetric component stirs the tracer via skew diffusion (e.g., Plumb (1979),
Plumb and Mahlman (1987), Middleton and Loder (1989)). Importantly, such stir-
ring by sub-grid scale correlations appears in addition to that associated with the
bolus transport arising from ub, where again ub arises from correlations between
velocity and thickness.

7.4.4 Mean tracer transport beneath a density surface

It is useful to further elucidate the relevance of mean thickness weighted fields. For
this purpose, we proceed as in Section 7.3.5.1 to consider the mean horizontal tracer
transport occurring beneath a particular potential density surface ρ = ρ̃

C#(zρ) =
zρ+ξ
∫

−H

C u dz. (7.71)
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Setting tracer concentration to unity recovers the expression (7.41) for the TRM
transport. As in Section 7.3.5.1, where we considered the mean horizontal trans-
port of fluid beneath ρ̃, we now have

C#(zρ) =
ρ̃(zρ)
∫

ρ(−H)

C u h
σ

dσ

=
ρ̃(zρ)
∫

ρ(−H)

h
σ

dσ ( ̂C û + ̂C′′ u′′)

=
ρ̃(zρ)
∫

ρ(−H)

h
σ

dσ ( ̂C û− J · ∇ρ ̂C)

=
zρ
∫

−H

dz ( ̂C û− J · ∇ρ ̂C).

(7.72)

Hence, the mean thickness weighted fields naturally appear when considering such
physically interesting quantities as the mean horizontal transport of a tracer be-
neath the modified mean potential density surface.

7.4.5 Summary of the mean field tracer equation

In summary, the parameterization problem for the mean thickness weighted tracer
in isopycnal coordinates reduces to a parameterization of the bolus velocity ub,
related to the effective horizontal velocity field

û(ρ) =
h u

ρ

h
ρ = uρ +

h′ u′
ρ

h
ρ = uρ + ub, (7.73)

as well as the tracer mixing tensor

̂C′′ u′′ = −J · ∇ρ ̂C, (7.74)

which generally has symmetric (diffusive) and anti-symmetric (stirring) compo-
nents.

For a mean z-coordinate description, we use equation (7.35) relating thickness
weighted mean fields, defined as a function of ρ, and TRM fields, defined as a
function of the mean depth of ρ, to write for the tracer field

̂C(x, y, ρ̃, t) = C
#(x, y, zρ, t). (7.75)

It is the TRM tracer concentration C
#

that is discretized by coarse resolution z-
coordinate ocean models. Equation (7.75) and our developed formalism leads to
the exact mean-field tracer equation in z-coordinates

∂tC
# = ∇ · (∇C

# ∧Ψ#) + R(C
#), (7.76)
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where R(C
#) is the z-coordinate form of the mixing/stirring operator on the right

hand side of equation (7.70). In z-coordinates, this operator is generally comprised
of the Redi (1982) isopycnal diffusion tensor, which produces a diffusive flux of C

#

oriented along surfaces of constant modified mean potential density ρ̃, and an anti-
symmetric piece which has yet to be studied in the ocean modeling literature. Ψ

#

is the TRM transport streamfunction defined by equation (7.38). We further discuss
its parameterization in Section 7.5.

7.5 Quasi-Stokes transport in z-models

The goal of a parameterization is to represent eddy correlation terms by expressions
dependent only on the mean fields. Two correlation terms have been identified in
the previous sections: the quasi-Stokes transport Uqs and the tracer mixing/stirring
operator R(C

#). We focus here on the quasi-Stokes transport and its parameteriza-
tion in z-models. As our focus here is strictly z-coordinates, all averages refer to
Eulerian averages and so the z label on the overbar is dropped for brevity.

As stated earlier, we assume that modified mean potential density ρ̃ is dis-
cretized by a coarse resolution Boussinesq z-model. Hence, the skew flux from
equation (7.46)

F# = −U# ∂zρ̃+ ẑ U# · ∇zρ̃ (7.77)

must be parameterized. Again, for the isentropic ensemble with kinematic rear-
rangement of parcels, the horizontal TRM transport is written

U#(z) = U(z) + Uqs(z), (7.78)

with z = zρ the mean depth of the potential density, U(z) the Eulerian mean hori-
zontal transport explicitly carried by the z-model that passes beneath the depth z,
and

Uqs(z) =
zρ+ξ
∫

zρ

u dz ≈ −u′ ρ′

∂zρ̃
+
φ ∂zu
(∂zρ̃)2 (7.79)

is the horizontal eddy-induced, or quasi-Stokes, transport which must be parame-
terized. The second, approximate, expression is accurate to third order in eddy am-
plitude. Notably, one advantage of working with the skewsion or streamfunction
approach is that it is only a horizontal transport Uqs that must be parameterized, in
contrast to the conventional Eulerian approach which aims to parameterize a three
dimensional eddy correlation v′ ρ′.

7.5.1 Rotational and divergent components

The analysis so far has found the vertical gauge (Section 7.2.2) to be a natural means
to represent both the resolved and unresolved potential density flux. However, as
it is the convergence of the flux that determines the evolution of the modified mean
potential density field ρ̃, one can add various curls, or rotational terms, to the flux
to put it into a more convenient form. For example, when representing the flux due
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to the resolved scale flow, it is possible to add the total rotational term∇∧ (ρ̃U∧ ẑ)
in order to change the skew flux to an advection flux.

For the unresolved part of the flux, proportional to the quasi-Stokes transport
Uqs, we remain within the skewsion framework as it is more convenient. However,
there remains a gauge ambiguity that allows for the addition of an arbitrary rota-
tional term to the horizontal skew flux −∂zρ̃ Uqs. Indeed, when diagnosing eddy
correlations in fine resolution models, there is generally a nontrivial rotational term
(e.g., Lau and Wallace (1979), Marshall and Shutts (1981), Bryan et al. (1999)) which
is associated with the advection of potential density variance. This term is not easily
parameterized, nor does it require parameterization since its convergence vanishes.

7.5.1.1 Flux divergence

Various approaches present themselves for handling the unresolved rotational term.
The first approach is to not concern oneself with details of the diagnosed fluxes, but
instead to focus on their convergence. This approach formed part of the analysis
of Bryan et al. (1999), and it provides unambiguous information about what drives
the mean flow. However, in some occasions it may produce noisy results which
makes it difficult to make strong conclusions. This difficulty may be dependent on
details of the problem considered.

7.5.1.2 Zonal symmetry and zonal means

The second approach is to work in a zonally symmetric channel and to employ
zonal averages instead of, or in addition to, time and/or ensemble averages. All
averaged fields then become functions of just the meridional and vertical spatial
directions, and the effective transport reduces to just the meridional component.

More precisely, consider a zonally averaged form of the thickness equation us-
ing isopycnal coordinates

∂th
ρ

+ ∂y(h
ρ

v̂) = 0, (7.80)

with

v̂ = vρ +
v′ h′

ρ

h
ρ (7.81)

the effective meridional velocity field. The ∂x(u h
ρ
) term vanishes due to zonal sym-

metry and use of zonal averages. The corresponding exact z-coordinate description
thence considers the two-dimensional effective skew flux

F# = V#(−ŷ ∂zρ̃+ ẑ ∂yρ̃) (7.82)

whose convergence drives the evolution of the modified mean potential density
field ρ̃(y, z, t). The same approximations used to reach the approximate quasi-
Stokes streamfunction (7.79) can be applied here to yield the third order accurate
form for the effective transport passing beneath the averaged depth of the modified
mean potential density field:

zρ
∫

−H

v̂ dz ≈ V(z)− v′ ρ′

∂zρ̃
+
φ ∂zv
(∂zρ̃)2 . (7.83)
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The only ambiguity that remains in the meridional skew flux −V# ∂zρ̃ arises from
the ability to add an arbitrary function of zonal position. Yet since all averaged
fields are only functions of meridional and depth positions, this ambiguity is not a
problem. The zonally symmetric case is therefore quite simple to consider.

7.5.1.3 The rotational component

The third approach is to actually take the effort to compute the rotational compo-
nent. Doing so requires the specification of boundary conditions, and their form is
not obvious, except for the case of periodicity in which both rotational and diver-
gent components are periodic.

To expose the main issue, consider the case when −Uqs ∂zρ̃ is diagnosed. For
brevity, at each depth level, write

A(x, y, t) = −Uqs ∂zρ̃. (7.84)

There is a self-consistent method for splitting A into its rotational and divergent
components, and this method is standard in the fluid mechanics literature (e.g.,
Section 1.1 of Saffman (1992) and Section 17.2 of Panton (1996)). Since the vector A
is two-dimensional, the decomposition generally takes the form

A = Adiv + Arot = ∇Φ+ ẑ ∧∇χ, (7.85)

where the scalar fields Φ and χ satisfy

∇2Φ = ∇ ·A (7.86)

∇2χ = ẑ · ∇ ∧A. (7.87)

Because of the no-normal flow boundary condition on vertical side walls

A · n̂ = 0, (7.88)

where n̂ is the outward normal at the boundary. When decomposing A into its
rotational and divergent components, the boundary condition becomes

n̂ · ∇Φ+ n̂ · (ẑ ∧∇χ) = 0. (7.89)

Notably, each component in general does not separately satisfy the no-normal flow
condition.

To proceed, the scalar field χ is assumed to maintain regularity at infinity, pe-
riodicity on the sphere, yet no specified boundary conditions on the side walls.
Upon solving for χ via a numerical elliptic solver or a Green’s function approach,
its value is known everywhere. In particular, it is known on the side boundaries,
which in turn allows for the scalar field Ψ to be found by solving the boundary
value problem

∇2Ψ = ∇ ·A (7.90)
n̂ · ∇Ψ = −n̂ · (ẑ ∧∇χ), (7.91)

again using a numerical elliptic solver or a Green’s function approach. Thus speci-
fies the divergent and rotational components.

Although the above algorithm is self-consistent, it is not unique. Fox-Kemper
et al. (2003) provides a thorough summary of this issue, and suggests some integral
diagnostics which are unique and so of use for the eddy-closure problem.
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7.5.2 GM90 skew-diffusion

A popular parameterization of the quasi-Stokes streamfunction is that proposed by
Gent and McWilliams (1990) and Gent et al. (1995). We discuss this parameteriza-
tion more thoroughly in Section 12.2.1. For now, we note that this scheme closes
the divergent part of the quasi-Stokes transport by setting

Uqs = −κS. (7.92)

In this expression, S is the slope of the modified mean potential density surfaces
(equation (7.47)), and κ > 0 is a diffusivity. The corresponding three-dimensional
non-divergent velocity is given by

v∗ = −∂z (κ S) + ẑ∇z · (κ S), (7.93)

and the anti-symmetric stirring tensor (Griffies (1998)) is

Amn =





0 0 −κSx
0 0 −κSy
κSx κSy 0



 . (7.94)

The parameterized skew flux of modified mean potential density due to the quasi-
Stokes transport is given by

Fqs = −Uqs ∂zρ̃+ ẑ Uqs · ∇zρ̃ = −κ
(

∇zρ̃− ẑ S2 ∂zρ̃
)

. (7.95)

This parameterization leads to horizontal downgradient diffusion of modified mean
potential density, combined with a vertical upgradient diffusion. Additionally,
Gent et al. (1995) prescribe a diffusivity that vanishes on all boundaries, including
the ocean surface. McIntosh and McDougall (1996) and McDougall and McIntosh
(2001) present more discussion of vertical boundary conditions, which are under-
stood transparently when considering the exact form of the quasi-Stokes transport
defined by equation (7.44).

To see what the Gent et al. (1995) parameterization corresponds to in terms of
sub-grid scale correlations, we expand the quasi-Stokes transport to second order
(equation (7.79)) and thus equate to the parameterization (7.92)

(

−u′ ρ′ +
φ ∂zu

∂zρ̃

)

div
≈ κ∇zρ̃, (7.96)

where only the divergent part of the eddy correlation is considered. The impor-
tance of the uzφ/∂zρ̃ term has not been examined in the literature. Instead, for
example, Treguier et al. (1997) and Roberts and Marshall (2000) ignore this term,
thence equating the Gent et al. (1995) parameterization with the traditional hor-
izontal downgradient diffusion of potential density (u′ ρ′)div = −κ∇zρ̃. Again,
such is not correct when the variance term uzφ/∂zρ̃ is important. Careful examina-
tion of eddying z-coordinate models is necessary to clarify the importance of the
variance term.
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7.5.3 Effective meridional volume transport

It is often of interest to compute the net transport of volume across a portion of the
ocean. In particular, meridonal-overturning streamfunctions allow us to visualize
and quantify the zonally averaged circulation occuring in a closed basin or over the
full globe. The quasi-Stokes transport provides a transport in addition to that from
the resolved scale Eulerian mean transport. The parameterization of Gent et al.
(1995) leads to a straightforward computation of the quasi-Stokes contribution. To
see this, we write the net meridional transport across a basin at a particular depth
in the form

T (y, z, t) =
∫

dx V#(y, z, t)

=
∫

dx (V −κ Sy).
(7.97)

The parameterized quasi-Stokes transport adds a contribution that scales linearly
with basin size, isopyncal slope, and diffusivity

T qs ∼ L Sκ. (7.98)

As an example, let κ = 103m2 s−1, S = 10−3, and L = 107 m, which yields T ≈
10Sv. Such transport can represent a nontrivial addition to that from the resolved
scale velocity field.

7.5.4 GM90 and diffusion of isopycnal thickness

Recall the ensemble mean thickness equation (7.22) derived in Section 7.3.2

∂t h
ρ

+∇ρ · (h
ρ

û) = 0, (7.99)

where û = uρ + ub provides an effective transport velocity for the ensemble mean
thickness h

ρ
. Isopycnal correlations of horizontal velocity and thickness define the

bolus velocity via ub h
ρ

= h′ u′
ρ
. Now consider a downgradient diffusive closure

for this correlation
h
ρ

ub = h′ u′
ρ

= −K · ∇ρ h
ρ

(7.100)

with K a symmetric 2× 2 diffusion tensor. The mean thickness equation thus takes
the form of an advection-diffusion equation

∂t h
ρ

+∇ρ · (h
ρ
uρ) = ∇ρ · (K · ∇ρ h

ρ
). (7.101)

To make a connection between the thickness diffusion closure (7.100) and the
Gent and McWilliams (1990) closure discussed in Section 7.5.2, note that the mean
thickness is related to the vertical gradient of the modified mean density

h
ρ

= (∂z ρ̃)−1 (7.102)

where the right hand side is evaluated at a depth given by the mean of the isopycnal
z = zρ. Correspondingly, with ∇ρ = ∇z + S ∂z, again where z = zρ and S is the
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slope of the modified mean density field ρ̃ (see equation (7.47)), we have

∇ρ ln h
ρ

= −h
ρ∇ρ (h

ρ
)−1

= −(∂z ρ̃)−1 (∇z + S ∂z) ∂z ρ̃

= −∂z (∇z ρ̃)
∂z ρ̃

+
∂zz ρ̃∇zρ̃

(∂zρ̃)2

= ∂zS.

(7.103)

Consequently, the bolus velocity takes the form

ub = −K · ∇ρ ln h
ρ

= −K · ∂zS. (7.104)

For the special case where K is independent of depth and proportional to the 2× 2
identity matrix, then

ub = −∂z (κ S) = u∗ (7.105)

where we identified the horizontal component of the Gent and McWilliams (1990)
velocity u∗ from equation (7.93). Again, this identity holds only for the special case
of a vertically independent diffusivity tensor proportional to the identity. The rel-
evance of a depth independent diffusivity has been questioned by recent research,
such as Killworth (1997) and Smith and Vallis (2002). For these cases, placement of
the vertical derivative is crucial.

We note that there has been no identification of the vertical velocity component
w∗ = ∇z · (κS) from Gent and McWilliams (1990) with the vertical component of
the bolus velocity. Indeed, there is no need to explicitly compute the vertical com-
ponent of the bolus velocity since the thickness equation (7.99) only cares about the
horizontal transport. However, for z-models, the full three-dimensional velocity is
needed. Details of these points are provided by McDougall and McIntosh (2001).
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A fundamental problem in computational fluid dynamics is how to parameter-
ize processes that live at space-time scales not explicitly represented by the compu-
tational grid. Due to nonlinear interactions between scales, details of these subgrid-
scale processes (SGS) are often critical to the structure of the larger scales explicitly
represented. Hence, SGS processes cannot be ignored. Instead, they must be pa-
rameterized.

The purpose of this chapter is to provide an overview of the issues involved
in SGS parameterizations. This discussion builds on that given in Chapters 6 and
7, and furthermore helps to introduce the material in Parts IV and V which focus
on parameterizations of lateral (i.e., neutral) transport processes. We also highlight
here some issues related to small-scale dianeutral processes. Such processes affect
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the vertical stratification of properties in the ocean, and their parameterization in
ocean models is critical for physically realistic simulations.

8.1 Represented dynamics and parameterized physics

A process that is not resolved by a numerical model grid constitutes part of the
model’s subgrid-scale (SGS). As we are concerned in this book with physics, unre-
solved processes are said to comprise the SGS physics. In contrast, space-time scales
that are resolved by the model grid are termed model dynamics.

This terminology is somewhat loose. For example, resolved dynamical pro-
cesses are often not fully resolved in a sense satisfactory to a rigorous numerical
analyst. Likewise, unresolved processes are often not fully subgrid-scale. Further-
more, even if there are plenty of grid points to in principle resolve a dynamical
process, the model’s discrete representation may not be faithful to the continuum
dynamics due to inaccurate or inappropriate numerical techniques. Given these
caveats, the loose distinction between resolved dynamics and SGS physics serves our
purposes for this chapter.

8.1.1 Resolved and SGS advective transport

An averaged description of nonlinear advective transport appearing in both the
momentum and the tracer equations introduces SGS transport terms whose form
is not prescribed by knowledge of just the resolved scales. Averaged advective
transport serves as the canonical example of the split between resolved dynamics
and SGS physics. Mathematically, we see this split by considering the average of
advective transport for an arbitrary fieldψ

〈vψ〉 = 〈v〉 〈ψ〉+ 〈v′ψ′〉. (8.1)

In this equation, the angle brackets denote an average operator, primes represent
deviations from the average, and v is the velocity field. The first term, 〈v〉 〈ψ〉,
is explicitly represented in an ocean model via a choice for a numerical advection
scheme. That is, this term is cast onto a numerical lattice and constitutes part of
the model’s resolved advective transport. The integrity of this representation of
resolved advection is very dependent on the sophistication of the numerical advec-
tion scheme. Such matters are crucial to the model simulation, yet are not part of
the discussion here (see Durran (1999) for a thorough and pedagogical presentation
of advection).

Given knowledge only of the mean fields 〈v〉 and 〈ψ〉, the correlation term
〈v′ψ′〉must be parameterized in order to account for its effects on the mean fields.
Discussions in Chapters 6 and 7 provide specific examples of such SGS transport
terms. Notably, via a choice in how one interprets the averaged fields and/or ap-
plies the averaging operator, we are able in both chapters to reduce the number of
SGS terms appearing in the averaged primitive equations, especially those appear-
ing in the kinematic equations. Nonetheless, the advective transport term 〈v′ψ′〉
cannot generally be eliminated via reinterpreting the resolved fields. Instead, it
leads to a SGS transport whose effects on the mean flow is often nontrivial, espe-
cially in regions of the ocean where unresolved turbulent transport occurs. Hence,
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ignoring this term, or prescribing a closure in an ad hoc or cavalier manner, is gen-
erally not an acceptable option.

8.1.2 Information loss and the closure problem

Providing a systematic means to rationally parameterize SGS transport processes
constitutes one of the fundamental unresolved problems in classical physics. This
is the turbulence closure problem. Notably, there is not just one closure problem. In-
stead, there is a closure problem for each of the many unresolved physical pro-
cesses. For example, the closure problem for unresolved mesoscale eddies is dis-
tinct from that for unresolved breaking internal waves. Details of the unresolved
processes generally prompt the kinematic framework for posing the closure prob-
lem as well as the dynamical assumptions that lead to a choice for the form of the
closure.

The closure problem results from a need to average over scales that are unre-
solved or unmeasured by the coarse-grained observer. Hence, the averaged equa-
tions contain less information than the unaveraged equations. This situation re-
flects the limits inherent in modeling and/or observing. Information loss also oc-
curs when formulating a thermodynamic description of matter from statistical me-
chanics (e.g., Jaynes (1957a)). From a statistical perspective, the two problems share
much in common. Indeed, some effort has been focused on the use of information
theory and its associated principle of maximum entropy to motivate the form of
turbulence closure in certain fluid systems (see e.g., Kraichnan and Montgomery
(1980), Holloway (1992), Salmon (1998), and Chavanis (2002)). These approaches
generally lead to a SGS term that relaxes the system to a state of maximum entropy.

For simple physical systems, such as a Brownian particle (Reif (1965)) whereby
we consider the averaged motion of a particle within a fluid affected by random
molecular bombardments, entropy maximization leads to a diffusive SGS term in
the mean-field equations. In fluid closures, following the Brownian particle exam-
ple, one may wish to diffuse all quantities that are materially conserved in ideal
flow, such as material and thermodynamic tracers. It may also be appropriate to
diffuse dynamical tracers that are materially conserved, such as potential vorticity
(PV) in ideal flows (see Section 3.7). In contrast, it is not generally appropriate to
diffuse linear momentum since it is not materially conserved due to pressure forces.
As discussed in Part V of this book, linear momentum diffusion is nonetheless often
used in ocean modeling due to numerical constraints.

Tracer diffusion is both numerically necessary and physically reasonable, so
long as the diffusion respects the huge separation in magnitude between neutral
and dianeutral processes (see Section 8.2). Additionally, PV diffusion is the pre-
ferred approach for many theories of mesoscale eddy closures (see Section 7.1 for
more discussion). Notably, arguments leading to Brownian motion diffusive clo-
sures of material and thermodynamic tracers must be extended when considering
a dynamically active tracer such as PV. At present, there is no general theory leading
to the identification of PV diffusion with entropy maximization within the primitive
equations. The significance of this theoretical hole depends on what one regards as
more fundamental, PV diffusion or entropy maximization.
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8.2 Lateral (neutral) and vertical processes

As mentioned above, ocean turbulence associated with small scale mixing tends
to be three-dimensional. As an approximation, this mixing is typically assumed
isotropic. At the larger scales (order many kilometres to hundreds of kilometres),
transport exhibits a significant amount of anisotropy, with lateral processes far
more efficient than vertical processes. In this section, we describe why such is the
case, and make more precise what oceanographers mean by lateral.

8.2.1 Neutral directions

Consider a fluid stably stratified in the vertical yet without any horizontal stratifi-
cation (i.e., flat isopycnals and so zero baroclinicity). Adiabatic motion of a parcel
in the vertical exposes the parcel to a restoring force due to its being surrounded
by fluid with different buoyancy −ρ g/ρo. When displaced a small amount in the
vertical, the parcel undergoes linear oscillations about its initial equilibrium posi-
tion with a frequency proportional to the vertical density gradient (e.g., Gill (1982)).
However, adiabatic motion in the horizontal does not alter buoyancy, and so hor-
izontal motion encounters no restorative force. That is, the horizontal defines a
direction of neutral buoyancy, or neutral direction, for horizontal density surfaces.

For non-horizontal isopycnals, neutral directions remain those directions that
a parcel can adiabatically move without altering its buoyancy. McDougall (1987a)
formalized this definition and showed us how to be mindful to locally define the
potential density when the equation of state is nonlinear. The result of his analy-
sis indicates that neutral directions are tangent to the locally referenced potential
density surface. Therefore, the adiabatic interchange of two fluid parcels along a
neutral direction does not alter the buoyancy of either parcel, nor does it alter the
gravitational potential energy of the combined two fluid parcel system. Locally ref-
erenced potential density can be considered a generalization of buoyancy (with a
factor of−g/ρo added), and so we often use the terms synonymously in the follow-
ing.

This discussion indicates how stratification acts as an effective barrier to mo-
tion across neutral directions. A consequence of this barrier is that many important
transport processes tend to spread properties much more efficiently along rather
than across neutral directions. Hence, neutral directions define what oceanogra-
phers mean by “lateral.” Measurements indicate that on the large-scales (order
hundreds of kilometres), the associated neutral-dianeutral anisotropy seen in tracer
transport can be as high as 108 in the ocean interior, with smaller anisotropies in re-
gions of strong dianeutral mixing such as within boundary layers or above rough
topography.

8.2.2 Neutral and dianeutral physical processes

Because of the anisotropy in transport processes described above, oceanographers
find it useful to classify SGS physical processes according to whether they predomi-
nantly act to transport properties in neutral directions or dianeutral directions. The
processes associated with neutral directed transport (both advective and diffusive)
are dominated by mesoscale eddies, and their effects on the lateral distribution of
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oceanic properties require parameterization in present-day ocean climate models.
As introduced in Chapter 7, kinematic and dynamic issues related to understand-
ing and parameterizing these eddies constitutes a large focus of current research.
Parameterizations of such neutral physics processes are discussed in Part IV.

Even though the dominant transport of ocean properties is along, and not across,
neutral directions, those processes contributing to the material modification of buoy-
ancy are crucial to establishing the oceanic stratification and vertical distribution of
oceanic properties such as heat, salt, and nutrients. Depending on the model class,
certain of these dianeutral transport processes constitute the dieneutral SGS physics
in an ocean model. Research on understanding and parameterizing processes af-
fecting dianeutral transport is quite active. This book is remiss at not devoting a
full set of chapters to this active field. To partially remedy this absence, we provide
a terse discussion in Sections 8.3 and 8.4. A far more thorough compendium can
be found in various contributions to Chassignet and Verron (1998), the thorough
review of small-scale mixing in the book by Kantha and Clayson (2000b), and the
review articles by Holloway (1989) and Toole and McDougall (2001).

In closing this section, we comment on the situation in atmospheric modeling,
where SGS physics generally refers only to physical processes materially affecting
buoyancy, such as convection and boundary layer processes. This situation is re-
lated to the larger Rossby radius in the atmosphere (some 10 times larger than the
ocean), which sets the scale for quasi-geostrophic turbulent processes (i.e., synoptic
weather) that dominanat the processes associated with neutral physics. This larger
spatial scale is reasonably well resolved by current global atmospheric models, thus
alleviating the need to parameterize their effects.

8.3 Basic mechanisms for dianeutral transport

Small-scale (order millimeters to many tens to hundreds of meters) turbulence leads
to dianeutral mixing of fluid parcels. Such mixing is typically parameterized as
Fickian diffusion of the material constituents and thermodynamic properties of the
fluid (i.e., dianeutral diffusion of tracers as discussed in Section 8.4). Dianeutral
tracer diffusion leads to dianeutral buoyancy diffusion. If the equation of state
is linear, then dianeutral buoyancy diffusion is the only contributor to dianeutral
buoyancy transport. In the presence of a nonlinear equation of state for seawater,
processes parameterized as neutral diffusion of potential temperature and salinity
lead to an additional contribution to dianeutral buoyancy transport which is itself
non-diffusive in nature. The purpose of this section is to introduce some processes
leading to dianeutral transport, with Section 8.4 following-up with a more mathe-
matical discussion.

8.3.1 Mechanical and buoyant mixing

As noted in Section 1.2 of Kantha and Clayson (2000b), there are two basic methods
whereby turbulent mixing is generated and maintained in the ocean: mixing via
shear instabilities (mechamical mixing) and mixing via gravitational instabilities
(buoyant mixing). Shear instabilities result from the differential motion of adjacent
fluid parcels. An example of such include the passage of internal waves through a
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quiescent background, in which wave breaking and/or shear instabilities prompt
mixing (see, e.g., Polzin et al. (1997), Toole (1998), and Chapter 6 of Kantha and
Clayson (2000b)). This mixing can affect the stratification of deep waters in the
World Ocean. Another example is the wind induced mixing occuring in the surface
ocean due to breaking surface waves. This mixing is critical for transferring mo-
mentum from the atmosphere into the ocean interior. A third example involves the
strong vertical shears within the equatorial current system. Here, shears can induce
unstable waves that break and thus mix properties vertically and are thought to be
essential for the maintenance of the equatorial currents.

Gravitational instabilities occur when buoyancy forcing causes a fluid parcel
to become gravitationally unstable. An important example of such occurs when
buoyancy is lost to the atmosphere as a winter storm passes over the ocean at high
latitudes (see, e.g., Send and Käse (1998), Large (1998), Marshall and Shutts (1999),
and Chapter 2 of Kantha and Clayson (2000b)). This process is associated with deep
convection and is critical for the formation of water masses in the World Ocean. An-
other source of gravitational instability is the heating of deep waters by geothermal
effects, thus inducing a rising column of fluid from the bottom to its level of neutral
buoyancy.

If shear and/or buoyancy forcing are maintained, flow instabilities evolve into a
fully developed three-dimensional turbulent state. Such turbulence is characterized
by random behaviour where fluid parcels readily mix their properties. Nonlinear
interactions afforded by advection of momentum lead to a cascade of kinetic en-
ergy to ever smaller scales. Ultimately, kinetic energy introduced by forcing at the
relatively large scales is dissipated by molecular viscosity at the Kolmogorov scale,
which is the scale where the effects on kinetic energy due to molecular viscosity
are comparable to advection. That is, where the Reynolds number defined in terms
of the molecular viscosity is on the order of unity. Notably, as three-dimensional
turbulence leads to the dissipation of kinetic energy, the associated mixing leads to
an increase in potential energy along with small levels of heating.∗ This behaviour
is in contrast to quasi-geostrophic turbulence, whereby potential energy contained
in sloped isopycnal surfaces is transferred to kinetic energy via the mechanisms of
baroclinic instability (see Section 7.1 for more discussion).

8.3.2 The nonlinear equation of state

Besides mixing associated with mechanical and buoyant mechanisms, cabbeling,
thermobaricity, and the weaker halobaricity lead to a nontrivial dianeutral transport
when two fluid parcels mix with equal density yet different potential temperature
and salinity. As seen in Sections 8.4.4 and 12.1.7, these effects are associated with
nonlinearities in the equation of state and lead to the material evolution of buoy-
ancy that is distinctly non-diffusive. McDougall (1987b) provides a more thorough
discussion of these effects, whose importance in certain regions of the ocean can
rival those from more traditional mixing processes.

∗As noted in Section 4.4.2, heating due to frictional dissipation by molecular viscosity is very
small in the ocean.
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8.3.3 Double diffusion

Dianeutral buoyancy transport also arises when a multi-component fluid, such as
seawater, is gravitationally stable yet possesses a nontrivial vertical gradient of its
constituents. For seawater, such occurs when vertical temperature and salinity gra-
dients have the same sign, and so contribute oppositely to the vertical density gra-
dient. Due to the differing rates of molecular diffusion for temperature and salin-
ity, mixing can ensue whereby potential energy is decreased. Notably, the resulting
density flux is up-gradient, although the temperature and salinity fluxes are each
down-gradient. Schmitt (1994), Schmitt (1998), Chapter 7 of Kantha and Clayson
(2000b), and Toole and McDougall (2001) provide reviews of such double diffusive
processes.

8.3.4 Summary of the processes

There is a plethora (a zoo!) of physical processes leading to dianeutral transport
throughout the World Ocean. Broadly, large levels of mixing occur in the upper
planetary boundary layer (the surface mixed layer) due to the effects of mechan-
ical and buoyant forcing from the atmosphere, sea-ice, and rivers. Large levels
also occur in selected regions of the ocean bottom boundary layer, where cascad-
ing overflows of heavy fluid enter regions of lighter fluid. The strong flows can
setup Kelvin-Helmholz instabilities and/or hydraulic jumps that render a signif-
icant level of entrainment with surrounding water as the overflow descends to
a level of neutral buoyancy (see, e.g., Price and Baringer (1994) and Beckmann
(1998)). Additionally, breaking internal waves scattered from rough topography
is now thought to provide for nontrivial levels of mixing extending thousands of
meters upward into the fluid column. Incorporating these processes, and others
such as cabbeling, thermobaricity, double-diffusion, breaking surface waves, etc.,
into ocean climate models requires a synergistic relationship between ocean climate
modelers, ocean process modelers, and ocean observationalists.

8.4 Dianeutral transport in models

The purpose of this section is to provide some mathematical statements in support
the discussion in Sections 8.2 and 8.3. In so doing, we hope to clarify some of the
main ideas.

8.4.1 Dianeutral velocity component

In Section 5.7 we introduced the dianeutral velocity component

w(ρ) = z,ρ
dρ
dt

(8.2)

with ρ symbolizing the locally referenced potential density, or buoyancy (sans the
−g/ρo factor). This equation is simply a definition of the dianeutral velocity compo-
nent w(ρ). In particular, we are not yet obliged to average over the micro-scale fluc-
tuations that lead to a “fuzziness” in surfaces of constant potential density. How-
ever, if we wish to use isopycnal coordinates (or more generally, neutral density
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coordinates), we must provide such an average, which necessarily leads to a coars-
ening of the field equations over small-scale mixing processes (see, e.g., deSzoeke
and Bennett (1993) and Davis (1994a,b)). We assume in the following that this av-
eraging has been done, which allows us to write the material time derivative in
isopycnal coordinates as

d
dt

=
(

∂
∂t

)

ρ

+ u · ∇ρ + w(ρ)
(

∂
∂z

)

. (8.3)

This expression prompts us to interpret w(ρ) as a dianeutral velocity component
measuring the rate at which fluid parcels penetrate a potential density surface (see
Section 5.7 for kinematic details leading to this interpretation). When w(ρ) vanishes,
the dynamics simplifies since the spatial component of the material time derivative
reduces from three to two dimensions. Some kinematic aspects of such quasi two
dimensional dynamics form the focus of Chapter 7. We are concerned in the follow-
ing with physical processes yielding a nontrivial w(ρ), thus leading to the material
evolution of buoyancy.

8.4.2 Dianeutral advection of buoyancy

With the dianeutral velocity component w(ρ) nonzero, buoyancy is materially al-
tered via

dρ
dt

= w(ρ)ρ,z. (8.4)

This equation follows by definition from equation (8.2). It affords an interpretation
of the material evolution of buoyancy according to dianeutral advection. That is,
all forms of dianeutral transport of buoyancy are summarized by their effects on
w(ρ), and so this perspective highlights the need to parameterize processes such as
those mentioned in Section 8.3 that lead to a nonzero w(ρ), as these processes are
key to providing a sound simulation of water mass transformations.

Expanding the material time derivative in equation (8.4) leads to the equivalent
statement

(∂t + u · ∇z + w ∂z)ρ = w(ρ)ρ,z. (8.5)

Consequently, dianeutral advection w(ρ)ρ,z encompasses in one term what four
terms describe in a z-coordinate perspective. This result highlights the fundamental
distinction between the vertical velocity component w and the dianeutral velocity
component w(ρ). This distinction was also noted from a kinematic perspective in
Section 5.7. Hence, vertical advection is fundamentally distinct from dianeutral
advection, simply because (see equation (5.71)) w(ρ) = w− (∂t + u · ∇ρ) z 6= w.

8.4.3 The tracer equation with a diffusive closure

Ocean climate models traditionally time step salinity and potential temperature (or
the potential enthalpy variable introduced in Section 4.7.2). The evolution of den-
sity is then diagnosed. The reason models time step tracers is because small-scale
mixing in the ocean can typically be parameterized for tracers as downgradient
diffusion. However, as we see here and as mentioned in Section 8.3.2, dianeutral



8.4. DIANEUTRAL TRANSPORT IN MODELS 195

transport of buoyancy cannot generally be parameterized as diffusion when the
equation of state is nonlinear. We expose these points in this section.

To get started, let us write the tracer equation in the form

dC
dt

= −∇ · F. (8.6)

To arrive at this equation, we must provide a coarsened description so that small
scale turbulent mixing processes have been averaged over. The convergence of the
flux F parameterizes the SGS mixing processes.∗ This coarsening renders, in partic-
ular, a smooth buoyancy field thus allowing us to exploit an isopycnal description
when convenient.

With small-scale mixing in the ocean associated with three-dimensional turbu-
lence, it is common to assume that a diffusive parameterization is appropriate. We
argued such in Section 8.1.2, since tracers are conserved properties and so are anal-
ogous to the Brownian particle. This assumption allows us to write the tracer equa-
tion (8.6) as

dC
dt

= ∇ · (K · ∇C) (8.7)

where K is a second order diffusion tensor (positive semi-definite and symmetric).
Mathematical properties of the diffusion tensor are discussed in Section 11.4, with
further focus on the neutral diffusion tensor in Section 12.1. For present purposes,
we note that components to this tensor can generally be written in a projection
operator form (see equation (12.13))

Kmn = AI(δmn − ρ̂mρ̂n) + ADρ̂
mρ̂n. (8.8)

In this equation, AI and AD are non-negative diffusivities associated with parame-
terized tracer mixing along and across neutral directions, and ρ̂ is a unit direction
perpendicular to a neutral direction. For diffusion parameterizing three-dimensional
isotropic turbulence, it makes sense to set AI = AD. However, as indicated in
our discussion of neutral directions in Section 8.2.1, it is useful to anticipate an
anisotropy between along and across neutral directions for processes affected by
buoyancy, which generally leads to AI > AD.

Due to large inhomogenities in unresolved dianeutral processes, the diffusivity
AD exhibits a widely varying space-time dependence. For example, in the quiescent
ocean interior and pycnocline, measurements indicate that AD ≈ 10−5 m2 s−1 (e.g.,
Ledwell et al. (1993), Toole et al. (1994), and Kunze and Sanford (1996)), whereas
AD is enhanced one to three orders of magnitude above rough topography due to
breaking internal waves (Polzin et al. (1997)) or near rapid changes in bottom to-
pographic slope (Toole et al. (1994), Toole et al. (1997), Polzin et al. (1996)). The
diffusivity is also very large in various boundary layers, such as the surface and
bottom mixed layers. Rationalizing and parameterizing various regimes of turbu-
lent transport are central areas of research.

Averaging over small-scale motions so that neutral directions are well defined
leads to neutral slopes somewhat smaller than 1/100 in the bulk of the ocean. Con-
sequently, it is common to approximate the dianeutral diffusive contribution to the

∗Large et al. (1994) introduced to the ocean modeling community a non-local source term to pa-
rameterize non-diffusive dianeutral transport processes, especially those occurring in the ocean’s up-
per planetary boundary layer. We are not considering such effects in the present discussion.
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diffusion tensor (8.8) as
ADρ̂

mρ̂n ≈ ADẑ ẑ. (8.9)

As shown in Section 12.1.4, these two expressions differ to within terms going as
AD S2, which is quite small for slopes S ≤ 1/100. Hence, the use of vertical dif-
fusion to represent dianeutral diffusion is very accurate where neutral slopes are
small, which includes most regions outside of boundary layers. A similar approx-
imation for the along-slope diffusive fluxes, also detailed in Section 12.1.4, allows
for

∇ · (K · ∇C) ≈ ∇ρ · (AI ∇ρ C) + ∂z (AD C,z), (8.10)

where neglected neutral and dianeutral terms are proportional to (AI , AD) S2, re-
spectively, and

∇ρ = ∇z + S ∂z (8.11)

is the lateral gradient along a neutral direction (see Section 5.5.3 for a derivation),
with S the slope of the neutral direction given by S = ∇ρz. Consequently, the tracer
equation under a diffusive closure takes the form

dC
dt

= ∂z (AD C,z) +∇ρ · (AI ∇ρ C). (8.12)

8.4.4 Evolution of locally referenced potential density

With potential temperature and salinity satisfying an evolution equation of the
form (8.6) with a diffusive closure for the small-scale mixing processes, we can de-
duce the form for the evolution of locally referenced potential density

dρ
dt

= ρ,θ
dθ
dt

+ ρ,s
ds
dt

= −∇ · (ρ,θ F(θ) + ρ,s F(s)) + F(θ) · ∇ρ,θ + F(s) · ∇ρ,s

(8.13)

where ρ,θ = ∂ρ/∂θ and ρ,s = ∂ρ/∂s are the thermal and saline partial derivatives of
the locally referenced potential density. The absence of a ρ,p dp/dt contribution to
dρ/dt is due to our focus on locally referenced potential density, rather than in situ
density. Even so, ρ,θ and ρ,s are affected by pressure deviations when considering
their spatial gradients

∇ρ,θ = ρ,θθ∇θ+ ρ,θs∇s + ρ,θp∇p (8.14)
∇ρ,s = ρ,sθ∇θ+ ρ,ss∇s + ρ,sp∇p. (8.15)

The convergence −∇ · (ρ,θ F(θ) + ρ,s F(s)) in equation (8.13) represents the con-
vergence of the diffusive flux of locally referenced potential density

F(ρ) = ρ,θ F(θ) + ρ,s F(s). (8.16)

Notably, the contribution to F(ρ) from diffusion of potential temperature and salin-
ity along neutral directions vanishes, as it must by definition. That is, one cannot
diffuse buoyancy along a surface of constant buoyancy. This basic point is empha-
sized in Section 12.1.6, where we note that a numerical implementation of neutral
diffusion in a z-model must respect this property in order to remain numerically
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stable. Hence, when considering small-scale mixing parameterized as diffusion,
the flux of buoyancy reduces to just a vertical diffusive contribution

F(ρ) = −AD ρ,z ẑ. (8.17)

The term F(θ) · ∇ρ,θ + F(s) · ∇ρ,s appearing in equation (8.13) does not take the
form of a flux convergence. Hence, it is best thought of as a source term affecting
buoyancy. It is nontrivial only when the second partial derivatives of density do
not all vanish, and so they account for the nonlinear equation of state processes in-
troduced in Section 8.3.2. Manipulations in Section 12.1.7 illustrate how to identify
the source terms arising from cabbeling, thermobaricity, and halobaricity, which are
associated with temperature and salinity diffusion along neutral surfaces. A more
complete presentation is given by McDougall (1987a,b).

In summary, small scale mixing parameterized as tracer diffusion leads to the
material evolution of buoyancy

dρ
dt

= w(ρ) ρ,z

= ∂z (AD ρ,z) + F(θ) · ∇ρ,θ + F(s) · ∇ρ,s.
(8.18)

The first term on the right hand side represents the effects on buoyancy from dia-
neutral diffusion of potential temperature and salinity. The second term represents
the effects due to the nonlinear equation of state from seawater. These two terms
can be on the same order of magnitude in certain parts of the ocean (e.g., McDougall
(1987a,b)). Nonetheless, many discussions in the literature ignore the nonlinear
equation of state terms, and so the reader should be mindful of this limitation in
those discussions.

Equation (8.18) provides a useful venue to highlight how certain ocean mod-
els provide a more or less faithful numerical representation of these processes. For
this purpose, we focus on the distinctions between isopycnal models and z-models,
with sigma-models sharing much in common with z-models in the present discus-
sion (see Section 5.2 for a presentation of these models). For the dianeutral diffusive
process, z-models trivially incorporate this via linear vertical diffusion of potential
temperature and salinity, and they have no problem allowing for arbitrarily large
vertical diffusivities, so long as the time stepping is handled implicitly. In contrast,
diapycnal diffusion is a nonlinear process in isopycnal models, and details of how
to stably handle large diffusivities have only recently been clarified by Hallberg
(2000). Z-models incorporate effects from the nonlinear equation of state simply by
using a realistic equation for seawater density, such as the one recently proposed by
McDougall et al. (2002b). In contrast, these effects are nontrivial to incorporate into
isopycnal models, although successful methods are now available such as those
from Sun et al. (1999). Finally, the adiabatic stirring effects arising from advective
processes (appearing when the material time derivative is represented in its Eule-
rian form) are more cleanly handled by isopycnal models, thus accounting for their
use in many idealized studies of the adiabatic ocean circulation. We have more to
say in these regards in Sections 8.5 and 11.1.
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8.5 Numerically induced spurious dianeutral transport

The huge anisotropy between neutral and dianeutral mixing processes in the ocean
places a heavy burden on the numerical integrity of an ocean model. In particu-
lar, one cannot be too cavalier about how both resolved and parameterized trans-
port is realized in ocean models, since doing so risks not properly respecting the
anisotropy. Until the past decade or so, physical levels of anisotropy in the ocean
interior were not respected by the most common class of ocean climate models, the
z-models which form the focus of later chapters in this book. However, recent ad-
vances documented in Part IV have tremendously improved the integrity of coarse
resolution models.

Nonetheless, potential problems remain for refined models admitting mesoscale
eddies. As documented by Griffies et al. (2000b), since mesoscale eddies transfer
variance to the grid scale, this variance must be dissipated. Otherwise, eddying
simulations will degenerate into a sea of grid noise. Unfortunately, common meth-
ods for absorbing this variance introduce unphysically large levels of spurious dia-
neutral mixing, and this mixing can swamp the levels introduced by the physically
based SGS parameterizations. A possible means for resolving the spurious mix-
ing problem is mentioned in Section 11.1, where it is argued that the same neutral
physics operators physically motivated for coarse resolution models also serve as
useful numerical closure operators at the refined scales.

Additional problems with spuriuos mixing occur in z-models next to its step-
like topography. As noted by Beckmann (1998), much of the emphasis in simulat-
ing overflow processes in z-models is focused in providing a more suitable repre-
sentational framework, rather than in parameterizing physical processes. That is,
although there are physical reasons to expect enhanced mixing near the ocean bot-
tom, z-models can spuriously provide far more than the real ocean. Hence, consis-
tent with our discussion in Section 5.2, the z-model is cumbersome for the overflow
problem, whereas the sigma-model and isopycnal-model have been found to be far
more suitable.

As noted in Section 5.2, isopycnal models using a linear equation of state triv-
ially respect the large anisotropy between neutral and dianeutral processes. This
point is highlighted in the review article by Bleck (1998). However, isopycnal mod-
els employing a realistic nonlinear equation of state must also contend with poten-
tially unphysical levels of diapycnal advection. In this case, when isopycnal models
advectively transport temperature and salinity along isopycnal surfaces, numerical
isopycnal mixing associated with the advection schemes can introduce unphysi-
cally large amounts of cabbeling (Eric Chassignet, personal communication 2002).
This issue is also relevant in z-models. It therefore appears that all model classes
must contend with some level of spurious dianeutral processes. Algorithm de-
velopers must seek more refined methods which reduce the spurious transport to
physically acceptable, if not trivial, levels.
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SEMI-DISCRETE Z-EQUATIONS

Given the continuum version of the mean-field ocean equations, we here cast
these equations onto a discrete lattice. What lattice should we choose? How should
one discretize the various terms appearing in the equations, in both space and time?
How can we best ensure that the numerical fluid looks like the ocean? These are
questions which ocean modelers continually ask, and there are few unambiguous
answers.

In this and the remaining parts of this book, we expose our choice to use a fixed
Eulerian lattice appropriate for a z-model. By making this choice we recognize
that it introduces many egregious problems. The next decade will undoubtedly
see research into alternatives, and many promising ones exist today. Nonetheless,
z-models are the most mature and popular choice for those aiming to simulate the
global ocean climate. This in itself warrants a careful rationalization of their basic
equations.

This part of the book aims to perform the first steps towards obtaining a fully
discretized set of equations appropriate for a z-model. The method used is to in-
tegrate the continuum equations over a discrete model grid cell. Formally, this
approach is termed a finite volume approach. We are far from rigorous, however, in
that we choose to interpret our discrete variables in a manner that accords with our
chosen numerical schemes, some of which are finite-volume based, some of which
are not. Nonetheless, the finite volume approach is an effective means to derive
the semi-discrete finite differenced equations, and to expose some of the important
points about boundary conditions.

This part of the book considers in sequence the semi-discrete equations for mass,
tracers, and momentum. We present algorithms for solving these equations nu-
merically. In particular, the momentum equation chapter presents a particularly
popular means to time step the equations of motion forward, that being the split-
explicit free surface method. Alternative methods exist, with this one providing a
pedagogical example of issues arising in many of the approaches.
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NINE

Semi-discrete mass and tracer budgets
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This chapter discusses the semi-discrete mass and tracer budgets appropriate
for a z-coordinate ocean model with a free surface. Particular attention is paid to
details of the surface grid cell, where the undulating free surface allows the volume
of these cells to fluctuate in time. Discretization in time is assumed to occur using
a leap-frog scheme as commonly done in z-models such as Griffies et al. (2003).

9.1 Summary of the continuous model equations

The equations considered in this chapter represent discrete realizations of the con-
tinuum model equations for conservation of tracer and mass presented in Section
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6.8. The continuous non-Boussinesq mass and tracer equations are

ρ,t + ρo∇ · v = 0 (9.1)
(D ρz),t = −ρo∇ ·U + ρo qw (9.2)

(ρC),t + ρo∇ · (v C) = −ρo∇ · F + ρ S . (9.3)

Finite domains have the associated surface and bottom kinematic boundary condi-
tons

ρ η,t + ρo u · ∇η = ρo w + ρo qw at z = η (9.4)
u · ∇H + w = 0 at z = −H. (9.5)

In these equations,
ρ vρ = ρo v (9.6)

is the linear momentum density of a fluid parcel, and

D = H + η (9.7)

is the thickness of a column of fluid extending from the surface at z = η to the
bottom at z = −H. The Boussinesq equations are recovered by setting ρ→ ρo

∇ · v = 0 (9.8)
η,t = −∇ ·U + qw (9.9)

C,t +∇ · (v C) = −∇ · F + S (9.10)

with surface and bottom kinematic boundary conditions

η,t + u · ∇η = w + qw at z = η (9.11)
u · ∇H + w = 0 at z = −H. (9.12)

The interpretation of the model fields as ensemble means is given by Table 6.1. For
models not resolving the mesoscale, the subgrid-scale closure flux F is interpreted
according to the isentropic ensemble analysis given in Chapter 7.

9.2 Tracer and mass/volume compatibility

The tracer equation (9.3) represents a combination of mass and tracer conservation.
In the special case where the tracer is set to a uniform constant, the tracer equation
reduces to the mass continuity equation (9.1). Similarly, for a Boussinesq fluid, the
tracer equation (9.10) reduces to volume continuity (9.8). Such compatibility must
also be maintained over vertical columns of fluid, where the column integrated
mass conservation equation (9.2) must be compatible with the column integrated
non-Boussinesq tracer budget. Likewise, for a Boussinesq fluid, the column inte-
grated volume conservation equation (9.9) must be compatible with the column
integrated Boussinesq tracer budget.

The importance of maintaining such compatibility conditions was emphasized
by Griffies et al. (2001) when describing the implementation of a free surface method
for a Boussinesq fluid in a z-coordinate model. Time dependent thicknesses for
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the surface cells called for extra care in the discretizations. Compatibility between
the tracer and mass/volume budgets means that, for example, an initially uniform
tracer concentration will not change in the absence of sources, even if the surface
height changes. Griffies et al. (2001) referred to this compatibility condition as a lo-
cal conservation property, to distinguish it from global conservation which provides
for constancy of the globally integrated tracer content in the absence of external
sources.

Compatibility between tracer and mass/volume budgets means that the time
stepping scheme used for the tracer and surface height must be the same. In the
case of MOM4, this means that the leap-frog discrete tracer equation leads to a
leap-frog discrete surface height equation. This is the reason we employ a “big-
leap-frog” for updating the surface height in Section 10.5 (equation (10.71)). It also
means that mass continuity must be updated using a leap-frog scheme, as discussed
in Section 9.3.

9.3 Mass budget for a grid cell

We start our development by vertically integrating volume and mass conservation
over the thickness of a grid cell. The same approach is used in Section 9.5 for de-
veloping the discrete tracer budget and Section 10.2 for the discrete momentum
budget. Mass conservation, although involving a time tendency, is implemented
in a diagnostic manner to determine vertical advective velocities. For the Boussi-
nesq fluid, similar diagnostic relations determine the vertical velocity, although the
density time tendency term is absent.

In the following, we refer to a schematic of surface cells given in Figure 9.1.
This figure is modified slightly from the free surface paper of Griffies et al. (2001).
Additionally, we focus on the non-Boussinesq budget, with the Boussinesq budget
trivially recovered by setting appropriate density factors to the constant reference
value ρo.

9.3.1 Diagnosing vertical velocity components

For Boussinesq fluids, the vertical velocity component is diagnosed from vertically
integrating the non-divergence condition ∂zw = −∇ · u. As the continuity equa-
tion is first order, it requires a single boundary condition for its integration. There
are two equivalent approaches: integrating from the top downward to the level
of interest, and integrating from the bottom upwards. Integration downwards has
been the common approach in many B-grid z-models since this allows for a use-
ful diagnostic whereby the diagnosed bottom velocity on a tracer cell must vanish,
since this cell has a flat surface (see Pacanowski and Griffies (1999) for details).
Non-zero values help to identify coding errors. To diagnose the vertical velocity
component in a mass conserving ocean model, it is necessary to integrate mass con-
servation ρ,t + ρo∇ · u + ρo ∂zw = 0 vertically over a grid cell. Again there are two
approaches: integrating downwards or integrating upwards, with the downwards
approach again preferred.

Let us now consider the details. Integration of mass conservation over a cell
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interior to the ocean (k > 1), whose volume is constant in time, yields

0 =
zk−1
∫

zk

dz (ρ,t + ρo∇ · v)

= ∂t

zk−1
∫

zk

dzρ+ ρo∇ ·
zk−1
∫

zk

dz u + ρo (wzk−1 − wzk )

→ ∂t (hρ)zk + ρo∇ · (h u)zk + ρo (wzk−1 − wzk ), (9.13)

where hk = zk−1 − zk is the thickness of the tracer cell (the cell on which density
is naturally defined). The continuous to discrete correspondence relation in the
last step can be made by interpreting the discrete model variables as averages of
the continuous variables over the grid cell. Solving for wzk leads to the iterative
relation for vertical advective velocity passing across the lower boundary of the
k′th interior grid cell

ρo wzk = ρo wzk−1 + hzk ∂t ρzk + ρo∇ · (h u)zk (9.14)

The time tendency term is absent for the Boussinesq fluid, where mass conservation
over the cell reduces to volume conservation.

Vertical integration over a surface ocean grid cell (k = 1) leads to

η
∫

z1

dz (ρ,t + ρo∇ · v) = ∂t

η
∫

z1

dzρ+ ρo∇ ·
η
∫

z1

dz u− ρo wz1 − (ρ η,t − ρo ̂N · v)z0

→ ∂t (hρ)z1 + ρo∇ · (h u)z1 − ρo wz1 − ρo qw, (9.15)

where z0 = η,
̂N = (−∇η, 1) (9.16)

is an outward pointing vector at the ocean surface, and the surface kinematic bound-
ary condition (9.4) was used. To maintain self-consistency with the discrete mass
budget, we time step density instead of thickness weighted density, thus leading to
the vertical advective velocity passing upwards into the surface grid cell

ρo wz1 = −ρo qw + hz1 ∂t ρz1 + ρz1 η,t + ρo∇ · (h u)z1 . (9.17)

For the Boussinesq case, the ∂t ρz1 term is dropped and all density factors are set
to ρo. The iterative equation (9.14) can be used for all vertical cells by defining the
vertical advective velocity wz0 according to

ρo wz0 = −ρo qw + ρz1 η,t (9.18)

for the non-Boussinesq case, and

wz0 = −∇ ·U (9.19)

for the Boussinesq case.
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9.3.2 Advection velocity components

Equations (9.14) and (9.17) are semi-discrete. A full discretization requires averag-
ing over the grid cell. Doing so results in all velocity components being averaged
onto the sides and top faces of the grid cell. One then has a full specification of the
convergence of mass onto the cell, which drives time tendencies in the grid cell’s
density.

When averaged onto cell faces, the velocity components are known as advective
velocities, since they are used for advecting tracers (Section 9.5) or momenta. On the
B-grid, a detailed form of the advective velocity components for tracers can be pre-
scribed according to the needs of energetic consistency as detailed in Griffies et al.
(2003). Furtheremore, the relation between advective velocities for tracers and mo-
mentum can be specified according to a liner mapping, as discussed in Pacanowski
and Griffies (1999) and Griffies et al. (2003). Notably, the same discretization of the
advective velocities can be used whether the discrete fluid is Boussinesq or non-
Boussinesq.

9.3.3 Specifying the density time tendency

As the mass continuity equation is implemented in a diagnostic mode, we must
specify the time tendency for the density. A prescription successfully used in MOM4
is given by the leap-frog scheme

∂t ρ ≈
ρ(e)(τ + ∆τ)− ρ(e)(τ − ∆τ)

2∆τ
, (9.20)

where ρ(e) is a density field set according to linear extrapolation (Greatbatch et al.
(2001))

ρ(e)(τ + ∆τ) ≡ ρ(τ) + [ρ(τ)− ρ(τ − ∆τ)] = 2ρ(τ)− ρ(τ − ∆τ). (9.21)

Although it adds to the model memory requirements, it is useful to explicitly carry
the density variable ρ(e) in the model since it is used very often with the non-
Boussinesq formulation.

9.4 Mass budget for a discrete fluid column

As seen in Section 9.3.1, the discrete fluid conserves mass by construction, since the
vertical velocity components are derived by integrating mass conservation over a
grid cell. Additionally, it is important to maintain mass conservation over a column
of fluid extending from the ocean surface to the bottom. As in the continuum case
discussed in Section 3.3.3, this constraint leads to an expression for the time evolu-
tion of the surface height. We now pursue a similar analysis for the discrete ocean
fluid.

For this purpose, recall from Section 9.3.1 that the discrete vertical velocity com-
ponents take the form

ρo wzk = ρo wzk−1 + hzk ∂t ρzk + ρo∇ · (h u)zk k > 1 (9.22)
ρo wz1 = −ρo qw + hz1 ∂t ρz1 + ρz1 η,t + ρo∇ · (h u)z1 k = 1. (9.23)
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Figure 9.1: Schematic of rectangular surface tracer and velocity cells with a free sur-
face z-coordinate model. This figure is modified slightly from the free surface paper
of Griffies et al. (2001). Tracer points are denoted by a solid dot and the tracer cells
are enclosed by solid lines; a velocity point is denoted by an “x” and is enclosed by
dashed lines. These points have fixed vertical position z = z1/2 < 0, regardless of
the value for the free surface height. The thickness of a tracer cell is ht = −z1 + ηt,
where ηt is the prognostic surface height determined through volume conserva-
tion. The thickness of a velocity cell is hu = −z1 + ηu, where ηu is determined
by a conservative average of the surrounding ηt values. Thicknesses of the cells
are assumed to be positive, so that −z1 + ηt > 0. In models without an explicit
representation of tides, this constraint in practice means that |z1| must be greater
than roughly 2m. For models with tides, |z1| may need to be somewhat larger, de-
pending on the tidal range considered. Additionally, when coupling to sea-ice, the
weight of the sea-ice will depress the ocean surface by an amount roughly equiva-
lent to the ice thickness. This process thus places another constraint on the thickness
of the top model grid cell, or on the thickness of the sea-ice. In either of these cases
(tides or sea ice), the limitations of the model cell thickness places an awkward con-
straint on the model’s ability to run with fine vertical resolution. This represents a
fundamental limitation of the z-coordinate models.
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A vertical sum of these velocities over the depth of a discrete column with Nk ver-
tical grid cells leads to an expression for the vertical velocity at the bottom of the
bottom-most grid cell

ρo wzNk
= −ρo qw + ρo∇ ·U + ρz1 η,t +

Nk

∑
k=1

hzk ∂t ρzk (9.24)

where U = ∑Nk
k=1 hzk uzk is the vertically integrated horizontal velocity. For the B-

grid used in MOM4, the land-sea boundary on the bottom of a column of tracer
cells is assumed flat (see Section 22.3.3 of Pacanowski and Griffies (1999) for more
discussion). Hence, the bottom kinematic boundary condition leads to

wzNk
= 0 at the bottom of a bottom-most tracer cell. (9.25)

This boundary condition is maintained for a discrete mass conserving fluid so long
as the surface height at the top of the tracer cell column satisfies

ρz1 η,t = −ρo∇ ·U + ρo qw −
Nk

∑
k=1

hzk ∂t ρzk . (9.26)

This expression for mass balance of a fluid column is directly analogous to the con-
tinuum result given by equation (3.38). Additionally, by noting that interior vertical
cell thicknesses are constant in time, we have

∂t

(

Nk

∑
k=1

hzk ρzk

)

= −ρo∇ ·U + ρo qw, (9.27)

which is directly analogous to the continuum mass balance given by equation (3.37).
For a Boussinesq fluid we have

η,t = −∇ ·U + qw (9.28)

which is the same form as the continuum volume balance given by equation (3.22).
The discrete form of these budgets provides the means to time step the surface
height. Details of this time stepping are pursued in Section 10.5. Finally, before
closing this subsection, we note that the expression (9.26) for η,t leads the relation
(9.18) for ρo wz0 to take the form

wz0 = −∇ ·U− ρ−1
o

Nk

∑
k=1

hzk ∂t ρzk , (9.29)

which reduces to
wz0 = −∇ ·U (9.30)

in the Boussinesq limit.

9.5 Tracer budget for a grid cell

We now develop the budget for tracer mass per volume within a discrete model
grid cell. As for the discrete mass conservation budget, we vertically integrate the
continuous tracer budget over the depth of a model grid cell. Special care is taken
when considering the surface boundary conditions.
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9.5.1 Vertical integration over a grid cell

We integrate the continuous tracer equation (ρC),t + ρo∇ · (v C) = −ρo∇ · F + ρ S
vertically over the depth of a model tracer grid cell. Firstly, the source term is
interpreted as

zk−1
∫

zk

dzρ S → (hρ S)zk . (9.31)

For an interior grid cell, the material transport term integrates to

zk−1
∫

zk

dz [ (ρC),t + ρo∇ · (v C)]

→ ∂t(hρC)zk + ρo∇ · (h u C)zk + ρo (w C)zk−1 − ρo (w C)zk . (9.32)

The advective tracer fluxes are computed on the sides of the cell, with their conver-
gence contributing to the time tendency of the tracer value within the cell.

Equation (9.32) is semi-discrete, with a full discretization of the thickness weighted
advective fluxes depending on details of the chosen algorithm. Additionally, the
thickness weighting of the horizontal fluxes can be implemented according to Ad-
croft et al. (1997) or Pacanowski and Gnanadesikan (1998) to account for the gen-
erally different adjacent cell thicknesses. Vertical integration of the SGS flux term
over an interior grid cell leads to

zk−1
∫

zk

dz∇ · F→ ∇ · (h Fh)zk + (Fz
zk−1
− Fz

zk
), (9.33)

where the three-dimensional SGS tracer flux is given by F = (Fh, Fz). Thickness
weighting of these fluxes in a discrete model is also described by Pacanowski and
Gnanadesikan (1998).

For a surface model grid cell, vertical integration leads to

η
∫

z1

dz [ (ρC),t + ρo∇ · (v C)] =

∂t

η
∫

z1

dz (ρC) + ρo∇ ·
η
∫

z1

dz (u C)− ρo (w C)z1 − Cz0 (ρ η,t − ρo ̂N · v)z0

→ ∂t(hρC)z1 + ρo∇ · (h u C)z1 − ρo (w C)z1 − ρo qw Cz0 , (9.34)

where the surface kinematic boundary condition (9.4) was used. Similar consider-
ations for the divergence of the SGS flux lead to

z0
∫

z1

dz∇ · F→ ∇ · (h Fh)z1 − Fz
z1

+ (F · ̂N)z0 . (9.35)
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9.5.2 Vertical tracer flux at the ocean surface

The tracer flux is generally comprised of an advective and a SGS turbulent contri-
bution

FC = v C + F. (9.36)

In particular, the tracer flux crossing the ocean surface is given by

(FC · ̂N)z0 = −qw Cz0 + (F · ̂N)z0 . (9.37)

This flux has a positive sign when tracer leaves the ocean.
In contrast to an interior vertical flux, ocean-only information is not sufficient

to estimate the individual terms in the surface tracer flux (9.37). Instead, as for
the surface momentum flux discussed in Section 10.2.4, the system is closed by
prescribing a total tracer flux crossing the ocean surface via a boundary layer model
or parameterization. Boundary layer models present the ocean with a total tracer
flux QC, which is the tracer flux crossing the ocean surface from other component
models, such as the atmosphere, river, and sea ice models. QC can also be specified
from data, or determined via damping to some specified tracer concentration.

The flux QC generally has a contribution from parameterized turbulence as well
as a tracer flux with fresh water,

QC = −qw Cw + Qturb
C , (9.38)

where Cw is the tracer concentration in the fresh water. Hence, assuming a contin-
uous flux at the ocean surface QC = (F · ̂N)z0 leads to

−qw Cz0 + (F · ̂N)z0 = −qw Cw + Qturb
C . (9.39)

In the absence of fresh water forcing,

(F · ̂N)z0 = Qturb
C if qw = 0. (9.40)

However, in general it is not always appropriate to equate the individual terms in
equation (9.39). In particular, Cw and Cz0 are not always the same. Salt provides the
most striking example, where salinity of fresh water, sw, is near zero yet the salinity
on the ocean side of the ocean surface, sz0 , is not generally zero. However, as seen
below, other tracers, termed neutral tracers, do allow for equating the individual
terms.

9.5.3 Tracer budgets for surface grid cells

Given the above prescription for the ocean surface tracer flux, the tracer budget
within a surface grid cell takes the form

hz1 ∂t(ρC)z1 = −ρo∇ · (h u C + h Fh)z1 + ρo (w C)z1 + (ρo Fz)z1 − η,t (ρC)z1

+ ρo qw Cw − ρo Qturb
C + (hρ S)z1 . (9.41)

We separated out the time tendency for the surface height as we are interested in
time stepping the density weighted tracer ρC instead of the thickness and density
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weighted tracer hρC. The discrete value for the time tendency η,t is given by the
leap-frog expression (10.71) for the non-Boussinesq fluid, and (10.72) for the Boussi-
nesq fluid. Note that boundary condition information which closes the surface cell
tracer budget is knowledge of the tracer concentration in fresh water, Cw, as well
as the parameterized turbulent tracer flux Qturb

C . Neither the tracer concentration at
the ocean surface, Cz0 , nor the turbulent flux (F · ̂N)z0 are explicitly needed.

The budget for a Boussinesq fluid simplifies by cancelling all density factors
and using the surface height equation η,t = −∇ ·U + qw to yield

hz1 ∂tCz1 = −∇ · (h u C + h Fh)z1 + (w C)z1 + Fz
z1

+ qw (Cw − Cz1 ) + Cz1 ∇ ·U− Qturb
C + (h S)z1 . (9.42)

Hence, if the tracer concentration in water equals that in the surface cell, the fresh
water contribution to the time tendency drops out. Note, however, than the influ-
ence of fresh water is still felt through its influence on the divergence∇ ·U.

9.5.4 Tracer concentration in fresh water

To compute the surface tracer budget, it is necessary to specify the tracer concen-
tration Cw in the fresh water. We consider here two general classes of tracers.

9.5.4.1 Neutral tracers

Most climate models do not carry information regarding the tracer concentration
in their rivers or atmospheric component models. Furthermore, the tracer concen-
tration Cw is often quite close to the tracer concentration within the adjacent ocean
cell. Hence, for many purposes, it is appropriate to assume

Cw ≈ Cz0 ≈ Cz1 . (9.43)

Such tracers are called here neutral tracers since they do not add or subtract from the
tracer concentration already present in the ocean cell, although they do alter the to-
tal tracer content. Notably, neutral tracers allow for the identification of individual
terms in the surface flux equation (9.39)

(F · ̂N)z0 = Qturb
C , (9.44)

even when there is fresh water forcing.

9.5.4.2 Salt

Due to a large hydration energy for salt, the air-sea interface effectively acts as an
impenetrable barrier to salt transport. Therefore, neglecting the formation of sea
spray and the interchange of salt with sea ice, and in the absence of salt entering
through the solid earth boundaries, total ocean salt remains constant. In turn, the
salt mass per unit volume ρ s within a grid cell, where s is salinity (a dimension-
less concentration), changes only through advective and turbulent fluxes from the
interior ocean, as well as time tendencies in the volume of the grid cell.
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By assuming salt does not pass the air-sea interface, the total flux of salt passing
across the ocean surface vanishes

Qs = (Fs · ̂N)z0 = 0, (9.45)

thus leading to the following budget for the mass per volume of salt in a surface
grid cell

hz1 ∂t(ρ s)z1 = −ρo∇ · (h u s + h Fh)z1 +ρo (w s)z1 + (ρo Fz)z1 − η,t (ρ s)z1 + (hρ S)z1 .
(9.46)

As the salt flux is comprised of parameterized turbulent and advective terms,
a zero surface salt flux implies a balance between the two contributions. On the
ocean side of the interface, this balance leads to

(Fs · ̂N)z0 = −qw sz0 + (F · ̂N)z0 = 0. (9.47)

That is, the turbulence flux of salt on the ocean side of the ocean surface is propor-
tional to the flux of salt associated with fresh water. It is this turbulence salt flux
which is to be used for computing buoyancy fluxes in ocean mixed layer schemes
(Section 9.6). Further discussion of this balance for the Boussinesq fluid can be
found in Huang (1993), where the turbulence flux was called an anti-advective flux.

On the atmosphere/river side, a zero total salt flux leads to the balance

Qs = −qw sw + Qturb
s = 0. (9.48)

Assuming the salinity of fresh water vanishes then leads to

Qturb
s = 0. (9.49)

This result makes sense when recalling that a fluid with uniformly zero salinity,
such as a fresh water river, trivially has no net transport of salinity, whether turbu-
lent or otherwise.

These considerations for salt flux across the air-sea interface are modified when
considering salt flux between the ocean and sea ice, since sea ice generally has a
non-zero salinity sw 6= 0. Many modern sea-ice models carry salinity content of the
ice. For this case, ocean salt content changes when sea-ice melts or forms.

9.6 Fluxes for turbulence mixed layer schemes

Ocean mixed layer schemes such as that of Large et al. (1994) require the computa-
tion of the oceanic turbulence buoyancy flux at the ocean surface. Hence, we find
it useful to summarize expressions for the turbulence flux of potential temperature
and salinity (F · ̂N)z0 . Section 9.5.2 noted that continuity of the tracer flux across the
air-sea interface leads to (equation (9.39))

−qw Cz0 + (F · ̂N)z0 = −qw Cw + Qturb
C , (9.50)

which renders
(F · ̂N)z0 = Qturb

C + qw (Cz0 − Cw). (9.51)
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Some special cases are now noted.
Recall from Section 9.5.4.1 that neutral tracers have Cz0 = Cw. Potential temper-

ature is a reasonable approximation to a neutral tracer. In this case,

(F · ̂N)z0 = Qturb
θ for neutral tracers with Cz0 = Cw, (9.52)

as already noted in Section 9.5.4.1. This result is familiar from rigid lid models.
For ocean regions free of sea-ice, recall from Section 9.5.4.2 that the total salt flux

vanishes at the ocean surface. Hence,

(F · ̂N)z0 = qw sz0 for tracers with zero air-sea flux such as salt. (9.53)

In the absence of fresh water flux, the turbulence flux of salt vanishes

(F · ̂N)z0 = 0 for salt if qw = 0. (9.54)

With non-zero fresh water fluxes, we may wish to set salinity at the ocean surface
using a centered approximation sz0 ≈ (sz1 + sw)/2 = sz1/2. However, it is arguable
that a better estimate is sz0 ≈ sz1 for regions where fresh water fluxes are associated
just with evaporation and precipitation. In this case, the turbulence salt flux is given
by

(F · ̂N)z0 = qw sz1 for salt if sz0 ≈ sz1 . (9.55)

9.7 Flux plus restore boundary conditions

It is common to run ocean models with a flux provided from data or another com-
ponent model, plus restoring to ocean data. The form for such a flux is given by

QC = (γC hz1 ) (Cz1 − C(data)) + Qturb,0
C − qw Cw, (9.56)

where Qturb,0
C is the turbulence flux from data or another model. The coefficient

γC is an inverse restoring time so that the product γC hz1 is a velocity scale. This
velocity scale is often called the piston velocity

Vpiston = γC hz1 (9.57)

with a larger Vpiston resulting in a stronger restoring. Note that with a free sur-
face, the piston velocity changes according to the thickness of the time dependent
top model grid cell hz1 (see Figure 10.1). For less ambiguity in interpretation, the
modeler may prefer to use the time independent top cell thickness (defined for
η = 0) instead, so to have a time independent piston velocity.

The flux Vpiston (Cz1 −C(data)) is positive when Cz1 > C(data), indicating a trans-
fer of tracer out of the model through the top, thus acting to damp the ocean surface
tracer back towards C(data). This restoring flux is considered part of the turbulent
flux, as opposed to part of the advective fresh water flux. That is, the total turbulent
flux is given by

Qturb
C = Vpiston (Cz1 − C(data)) + Qturb,0

C . (9.58)
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The case of salinity restoring is somewhat distinct. There are two approaches.
First, the restoring flux ρz1 Vpiston (sz1 − s(data)) can be considered an actual flux
of salt. Yet as mentioned in Section 9.5.4.2, salt does not generally cross the ocean
surface. Instead, the ocean salt content is reasonably close to constant, at least for
purposes of climate simulations. Hence, to maintain a constant salt content and to
provide a local restoring for the salinity field, we can eliminate the salt flux in favor
of an implied local fresh water flux via the equality

Vpiston (sz1 − s(data)) = qw sz1 , (9.59)

which leads to the fresh water flux

qw = Vpiston (1− s(data)/sz1 ). (9.60)

As a check, we see that if the ocean surface salinity sz1 is larger than the salinity
from the data, there is a positive input of fresh water to the ocean, thus damping
the surface salinity back towards that of the data. Note that there is no a priori
reason that this fresh water flux will integrate to zero over the globe. Hence, its use
will generally lead to a drift in ocean volume.
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The purpose of this chapter is to illustrate a solution method for the momentum
equations discretized in a free surface z-model. The splitting between slow three
dimensional dynamics and fast two dimensional dynamics is motivated and de-
tailed. The algorithm that we detail is known as a split-explicit free surface method
and we illustrate this method using a leap-frog time stepping scheme. Our discus-
sion shares much in common Killworth et al. (1991) and Griffies et al. (2001). An
alternative approach solves the fast dynamical system implicitly in time, with the
paper by Campin et al. (2003) documenting a novel scheme possessing desirable
conservation properties only approximately maintained by the scheme described
here. Care is taken in the following to distinguish between Boussinesq and non-
Boussinesq equations. Additionally, the rigid lid method for Boussinesq fluids is
presented and critiqued.

It is noted that we present here details of a commonly used time stepping scheme,
but do not provide a numerical analysis of its stability. For that purpose, the reader
is referred to the numerical analysis book of Durran (1999) which presents a thor-
ough analysis of various time stepping schemes of use for geophysical fluid mod-
eling.

10.1 Summary of the continuous model equations

The equations considered in this chapter represent discrete realizations of the con-
tinuum model momentum and kinematic equations presented in Section 6.8. For
completeness, we repeat them here assuming hydrostatic balance. The non-Boussinesq
hydrostatic equations are

ρ,t + ρo∇ · v = 0 (10.1)
(D ρz),t = −ρo∇ ·U + ρo qw (10.2)

u,t +∇ · (v uρ) +M ẑ ∧ vρ = − f ẑ ∧ v−∇(p/ρo) + F(u) (10.3)
p,z = −ρ g (10.4)

(ρC),t + ρo∇ · (v C) = −ρo∇ · F + ρ S , (10.5)

with surface and bottom kinematic boundary conditions

ρ η,t + ρo u · ∇η = ρo w + ρo qw at z = η (10.6)
u · ∇H + w = 0 at z = −H. (10.7)

In these expressions,
ρ vρ = ρo v (10.8)

is the linear momentum density of a fluid parcel, and ρo qw is the linear momen-
tum density of fresh water entering the ocean surface. The Boussinesq hydrostatic
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equations are recovered by setting ρ→ ρo, except when multiplying gravity

∇ · v = 0 (10.9)
η,t = −∇ ·U + qw (10.10)

u,t +∇ · (v u) +M ẑ ∧ v = − f ẑ ∧ v−∇(p/ρo) + F(u) (10.11)
p,z = −ρ g (10.12)

C,t +∇ · (v C) = −∇ · F + S , (10.13)

with surface and bottom kinematic boundary conditions

η,t + u · ∇η = w + qw at z = η (10.14)
u · ∇H + w = 0 at z = −H. (10.15)

Our interpretation of the model fields is summarized in Table 6.1.

10.2 Momentum budget for a grid cell

Before developing methods for time stepping the ocean model equations, we pro-
vide a semi-discrete form of the momentum equation. To do so, the continuum
model equations are integrated over the volume of a grid cell. In particular, we
focus on vertical integration since there are important points to highlight regarding
the surface and bottom boundary conditions. Horizontal integration follows simi-
larly, with boundary conditions on the sides simpler than the surface and bottom.
Where a choice is needed about horizontal placement of discrete fields, the B-grid
is used. The result of these manipulations is a consistent discretization of the con-
tinuous equations. Some details are left unspecified, such as the precise form of
advective and diffusive fluxes.

10.2.1 Material time derivative

To start, we integrate the material time derivative

ρ
Duρ

Dt
= (ρ uρ),t +∇ · (vρ ρ uρ) + ρM ẑ ∧ uρ = ρo (u,t +∇ · (v uρ) +M ẑ ∧ uρ)

(10.16)
over the depth of a grid cell. For the metric term, we prescribe the correspondence

zk−1
∫

zk

dzM ẑ ∧ uρ → hk (M ẑ ∧ uρ)k (10.17)

where hk = zk−1 − zk is the thickness of the velocity cell, and k labels the vertical
cell number. The correspondence (10.17) is afforded by assuming that correlation
terms, which arise from integrating the nonlinear product over the grid cell, are
absorbed into the SGS friction operator Fu.



220 CHAPTER 10. MOMENTUM EQUATION SOLUTION METHODS

Vertical integration of the time and space derivative operators over the surface
model grid cell (Figure 10.1) leads to

η
∫

z1

dz [u,t +∇ · (v uρ)] = ∂t





η
∫

z1

dz u



+∇ ·





η
∫

z1

dz u uρ





− (w uρ)z1 + [uρ (w− u · ∇η)− u η,t]z=η

= ∂t





η
∫

z1

dz u



+∇ ·





η
∫

z1

dz u uρ



− (w uρ)z1 − (uρ)z=η qw, (10.18)

where z0 = η, and we made use of the surface kinematic boundary condition ρ η,t +
ρo u · ∇η = ρo w + ρo qw. For Boussinesq models, uρ = u. In the discrete model, we
make the correspondence

∂t





η
∫

z1

dz u



+∇ ·





η
∫

z1

dz u uρ



→ ∂t(h u)z1 +∇ · (h u uρ)z1 , (10.19)

thus leading to

η
∫

z1

dz [u,t +∇ · (v uρ)]

→ ∂t(h u)z1 +∇ · (h u uρ)z1 − (w uρ)z1 − (uρ)z0 qw,

(10.20)

where
h1 = −z1 + η > 0 (10.21)

is the time dependent thickness of the surface velocity cell. The k > 1 interior grid
cells, which have time independent thicknesses, have the correspondence

zk−1
∫

zk

dz [u,t +∇ · (v uρ)]→ ∂t(h u)zk +∇ · (h u uρ)zk − (w uρ)zk + (w uρ)zk−1 . (10.22)

The thickness weighted horizontal fluxes can be computed as in Adcroft et al.
(1997) or Pacanowski and Gnanadesikan (1998) to account for the generally dif-
ferent adjacent cell thicknesses.

Equations (10.20) and (10.22) represent semi-discrete forms of the continuous
expression. A complete spatial discretization requires the computation of advective
velocities vadv on the respective sides of the velocity cell. Advective fluxes v uρ are
then constructed through multiplying the advective velocities by an approximate
value of uρ at the cell faces. Model forms for the momentum advective fluxes are
given in Griffies et al. (2003), where discrete energetic balances are presented. These
forms are constructed using second order centered expressions, as in Bryan (1969).
For our purposes, schematic semi-discrete expressions, such as equations (10.20)
and (10.22), are sufficient.



10.2. MOMENTUM BUDGET FOR A GRID CELL 221

z=0

z=η

ροw1

h1
ορ u1

z=(z1)/2

Figure 10.1: A grid cell used for computing the surface cell momentum budget. The
cell’s upper and lower boundaries are set by z0 = η and z1 < 0, and the position of
the grid point is z1/2. See also Figure 9.1 for more details.

10.2.2 Horizontal pressure gradient

Vertical integration of the horizontal pressure gradient over the depth of a grid cell
leads to the correspondence

zk−1
∫

zk

dz∇p→ hk∇pk, (10.23)

where pk is the hydrostatic pressure at the depth of the velocity point. Note that to
maintain energetic consistency, pressure is computed in a discrete z-model as the
hydrostatic pressure at the depth of the velocity point, rather than as a depth average
over the velocity cell (see Griffies et al. (2003)).

10.2.3 Friction due to vertical shears

The form of friction appropriate for an ocean model on the sphere using generalized
horizontal coordinates is derived in Chapter 15. It is comprised of two terms,

Fu = Fu
horz + Fu

vert, (10.24)

where Fu
horz arises from horizontal shears in the fluid, and Fu

vert arises from vertical
shears. To develop the full discrete equations, we find it useful to detail here the
contribution from vertical shears when integrated over a model cell. In general,
Fu

vert takes the form
Fu

vert = (κ uρ,z),z (10.25)

where κ is a non-negative vertical viscosity arising from unresolved small-scale
turbulence. As indicated here, it is important to compute friction using the velocity
uρ instead of u, where again ρ uρ = ρo u. The reason is that it is uρ which sets
the kinetic energy, and friction is defined so that it directly affects kinetic energy.
Likewise, it is uρ which should be used to determine the Richardson number for
use in turbulence closure schemes. The distinction between uρ and u is not made
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for the Boussinesq fluids, where uρ = u, and the factors of density are replaced by
ρo, which then cancel out from the friction vector.

Vertical integration of Fu
vert over the depth of a model grid cell leads to

zk−1
∫

zk

dz Fu
vert = (κ uρ,z)zk−1 − (κ uρ,z)zk . (10.26)

Differences in the diffusive fluxes across a cell lead to a net vertical transfer of hor-
izontal turbulent momentum into or out of the cell.

10.2.4 Special considerations for boundary cells

Written as a prognostic equation for thickness weighted horizontal velocity, the
momentum budget vertically integrated over a model grid cell becomes

(∂t + f ẑ∧ ) (h u)zk = −(hM ẑ ∧ uρ)zk −∇ · (h u uρ)zk − hk∇pk/ρo + (h Fu
horz)zk

− [(w uρ)zk−1 − (w uρ)zk ] + [(κ uρ,z)zk−1 − (κ uρ,z)zk ]. (10.27)

The surface and bottom grid cells require some added consideration, and that is the
focus of this subsection.

10.2.4.1 Vertical flux of horizontal momentum through the surface

Based on integrating the model equations over a grid cell, the vertical flux of hori-
zontal momentum passing through the bottom of grid cell k is given by

Fz
zk

= (uρ w)zk − (κ u,z)zk . (10.28)

The first term represents the vertical advective flux of horizontal momentum, and
the second term is the vertical diffusive flux of horizontal momentum that param-
eterizes SGS processes. The signs are such that horizontal momentum of the k grid
cell is gained if w > 0 or if velocity decreases upwards. The vertical flux of hori-
zontal momentum at the surface zk=0 = η takes the form

Fz
z0

= −(uρ)z0 qw − (κ uρ,z)z0 . (10.29)

As with the ocean interior, the surface flux is comprised of two contributions: an
advective flux, in this case due to fresh water crossing the ocean surface, and a
turbulent flux parameterizing unresolved momentum mixing processes, such as
those associated with atmospheric winds. The opposite sign on the fresh water
term accounts for the convention that qw > 0 for fresh water entering the ocean
(moving downward), whereas w > 0 for parcels moving upward.

At the ocean surface, the vertical flux of horizontal momentum is given in terms
of the generally unknown surface values for the horizontal velocity (uρ)z0 and its
vertical shear (uρ,z)z0 . Unlike interfaces in the ocean interior, it is unclear how to
approximate these terms since there is no ocean above the surface at z0 = η. An
alternative approach seeks not to approximate the terms individually. Rather, it
assumes a continuous total momentum flux across ocean surface. This approach
now places the responsibility of garnering the momentum flux onto a boundary
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layer model. Such models depend on the multifaceted interactions between wind,
waves, sea ice, rivers, etc.

To procede, we assume this boundary layer model has produced a value for the
total vertical flux of horizontal momentum, and this flux is written −(uρw ρo qw +
τwinds), with τwind a stress imparted by wind (and sea ice) on the ocean surface.
Continuity across the ocean surface renders

−Fz
z0

= (uρ)z0 qw + (κ uρ,z)z0 ≡ uρw qw + ρ−1
o τwinds. (10.30)

When there is no surface fresh water flux, there is a one-to-one relation between the
stress τwinds and the diffusive momentum flux at the surface

ρo (κ uρ,z)z0 = τwinds if qw = 0. (10.31)

In general, although the total momentum flux is continuous at the ocean surface,
the two components of the flux need not be. For example, the fresh water velocity
uρw is generally different from the ocean surface velocity uρz0 . Such may be impor-
tant when coupling an ocean model to a detailed river model. Nonetheless, most
present-day climate models (i.e., models circa 2003) assume the fresh water velocity
is equal to the horizontal velocity uk=1 in the top model grid cell.

We are interested in developing a scheme for time stepping velocity u, and not
the thickness weighted velocity h u. Hence, the surface cell k = 1 has a velocity
equation given by

hz1 (∂t + f ẑ∧ ) uz1 = −uz1 η,t − (hM ẑ ∧ uρ)z1 −∇ · (h u uρ)z1 − (h∇p)z1/ρo

+ (h Fu
horz)z1 − [(w uρ)z0 − (w uρ)z1 ] + [(κ uρ,z)z0 − (κ uρ,z)z1 ]. (10.32)

In particular, combining the uz1 η,t term with the vertical flux of horizontal momen-
tum at the ocean surface leads to

−uz1 η,t − Fz
z0

= −uz1 η,t + ρ−1
o (ρo qw uρw + τwinds)

= ρ−1
o

(

−uρz1
ρz1 η,t + ρo qw uρw + τwinds

)

, (10.33)

where we set ρo uz1 = uρz1 ρz1 . For a Boussinesq fluid, we set density to ρo and use
the column integrated volume conservation η,t = −∇ ·U + qw to find

−uz1 η,t +ρ−1
o (ρo qw uρw +τwinds)→ uz1 ∇ ·U + qw (uρw− uz1 ) +τwinds/ρo. (10.34)

Hence, for the special case of equal fresh water and surface ocean velocities, uρw =
uρz1 , the fresh water flux drops out as an explicit contribution to the Boussinesq mo-
mentum budget. It nonetheless remains involved in the budget through its effects
on the convergence −∇ ·U within the surface height equation.

10.2.4.2 Vertical flux of horizontal momentum through the bottom

Considerations analogous to those relevant at the ocean surface also apply at the
ocean bottom. Yet at the bottom there is no advective momentum flux from the
solid earth to the ocean. Furthermore, the bottom grid cell is typically assumed to
have time independent thickness (though this may not be the case with a bottom
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boundary layer model as described by Killworth and Edwards (1999)). So the only
contribution to the vertical flux of horizontal momentum arises from the SGS fric-
tion. For k = Nk (the bottom-most grid cell in a column), this friction is commonly
written

−ρo Fz
zNk

= ρo (κ uρ,z)zk = τ bottom, (10.35)

where τ bottom is the bottom stress vector (with units of pressure). The bottom stress
is often associated with currents or tides causing fluid to move over rough small
scale topography. However, some SGS interactions between topography and meso-
scale eddies act to increase the kinetic energy, as described by Holloway (1992).

10.2.4.3 Hydrostatic pressure in the surface cell

In Section 3.8.1 we considered an approximate expression for the continuum hy-
drostatic pressure at an arbitrary depth

p = pa + ps + pb, (10.36)

where

pb = g
0
∫

z

ρ dz (10.37)

is known as the baroclinic or internal pressure field,

ps = g ηρ(z = 0) (10.38)

is known as the surface pressure field, and pa is the pressure at z = η from the
overlying atmosphere or sea ice. The baroclinic pressure is that pressure at depth
z < 0 arising from ocean fluid contained between z = 0 and z < 0. The surface
pressure is that pressure at z = 0 arising from the ocean fluid between z = 0 and
z = η, assuming density in this layer is vertically uniform with value ρ(z = 0). The
surface pressure is negative if η < 0.

Given the linear relation between pressure and density, it is natural to define
the discrete pressure field on the density/tracer points. For a B-grid arrangement
of variables, the offset in the horizontal between velocity and tracer/density points
means that the hydrostatic pressure at the face of a velocity cell must be computed
via a spatial average. The gradient of this pressure across the velocity cell deter-
mines the horizontal pressure gradient force acting on the fluid in the cell.

The particular case of a surface cell is worth highlighting. Here, pressure at the
western face of a surface velocity cell and at the depth of the velocity point (see
Figure 9.1) is given by

p = gρ (|z1|/2 + η)
y

+ pa, (10.39)

where ( )
y

is a meridional grid average and η is the surface height on the tracer
point. A similar expression is used to estimate pressure on the meridional face of
the velocity cell. The first piece of this pressure,

pb ≡ (g |z1|/2)ρy, (10.40)

is a discretization of the baroclinic pressure in the surface cell. This is the pressure
due to fluid between the resting surface z = 0 and the velocity point at z = |z1|/2.
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Note that z1 has been assumed independent of horizontal position, hence its re-
moval from the meridional average operator. Such is the case for surface grid cells
in z-coordinate models. The second contribution

ps ≡ gρ ηy (10.41)

is a discretization of the surface pressure onto the western face of the velocity cell.
Again, this is the hydrostatic pressure at z = 0 associated with fluid between z =
0 and z = η. Gradients in the surface pressure arise from those in the density
weighted free surface height.

For Boussinesq models, it is common to approximate the surface pressure on
the western face of the velocity cell as ps ≈ gρo η

y, rather than use the hydrostatic
form gρ ηy. With this approximation, surface pressure gradients arise solely from
gradients in the free surface height. To maintain self-consistency with the hydro-
static baroclinic pressure field, while incurring only trivial computational expense,
we recommend the hydrostatic form ps = gρ ηy even when using the Boussinesq
option.

10.3 Strategy for time stepping

Our goal is to develop a strategy for time stepping the momentum budget over
the course of a discrete time step of length ∆τ . This goal is complicated by the
presence of acoustic waves in the non-Boussinesq fluid, and external or barotropic
gravity waves in either the non-Boussinesq or Boussinesq fluid. Resolving these
fast modes requires ∆τ to be too small for use in climate studies, where simulations
are desired on the order of centuries to millenia. Hence, approximate approaches
are needed.

10.3.1 Acoustic modes and the quasi-non-Boussinesq approximation

Acoustic waves are three-dimensional fluctuations in the pressure field (e.g., Gill
(1982), Apel (1987)). They travel at roughly 1500m s−1. However, there is no evi-
dence that resolving acoustic waves is essential for the physical integrity of ocean
climate models. Hence, we are not motivated to resolve these waves for our pur-
poses.

As mentioned in Section 2.4.1, use of the hydrostatic approximation in primi-
tive equation ocean climate models acts to filter all acoustic modes except the Lamb
wave. We can be assured of filtering the Lamb wave by either taking the Boussinesq
approximation or by assuming density appearing in mass continuity is a function
of a time independent pressure (Section 4.8.4). The latter method is described in
Durran (1999), where he calls the resulting fluid pseudo-incompressible, as well as
Greatbatch et al. (2001). We prefer the term quasi-non-Boussinesq. This approxima-
tion, however, has not been found necessary in the non-Boussinesq form of the code
described by Griffies et al. (2003) (MOM4). Instead, the Lamb mode in practice has
been found to be weak and so the model is stable even when using the full density.
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10.3.2 Computing in situ density

We are here more precise regarding how density is evaluated. Recall from Section
4.8 that density can be written as a function of potential temperature, salinity, and
pressure

ρ = ρ(θ, s, p). (10.42)

Potential temperature and salinity evolve according to their respective prognostic
tracer equations (see Section 10.1). Pressure, however, is determined diagnostically
by vertically integrating the hydrostatic balance (e.g., Section 10.2.4.3), and so pres-
sure is itself a function of density.

As discussed in Griffies et al. (2001), a simple way to break the pressure-density
loop is to approximate density at a model time step τ according to

ρ(τ) = ρ(θ(τ), s(τ), p(τ − ∆τ)). (10.43)

A slightly more accurate approximation is to estimate the pressure p(τ) according
to a linear extrapolation using p(τ − ∆τ) and p(τ − 2∆τ)

p(τ) ≈ (p(τ − ∆τ)− p(τ − 2∆τ)) + p(τ − ∆τ). (10.44)

Alternatively, we may wish to consider an iterative method as in Dewar et al. (1998),
but these approaches tend to be time consuming. Whatever method is used, the re-
sulting density is a function of a time dependent pressure field, as it should be. This
density is then used for computing pressure p(τ) whose gradient sets the horizon-
tal pressure gradient.

For purposes of computing mass continuity, a quasi-non-Boussinesq fluid uses
the alternative density field

ρ(τ) = ρ(θ(τ), s(τ),−ρo g z), (10.45)

where −ρo g z is the hydrostatic pressure associated with a fluid of constant den-
sity ρo. Note that this is the form for density suggested by Bryan and Cox (1972)
and used by many z-coordinate models until the middle 1990’s (e.g., Cox (1984),
Pacanowski et al. (1991) (MOM1), and Pacanowski (1995) (MOM2)). As desired,
time tendencies of ρ do not have contributions from p,t, and so all acoustic modes
are eliminated. As stated above, this approximation has not been found necessary
in practice for the non-Boussinesq form of MOM4. Hence, the pressure dependence
of density as computed in equation (10.43) is recommended.

10.3.3 Barotropic or external gravity waves

In both non-Boussinesq or Boussinesq fluids, external waves are roughly 100 times
the speed of the next fastest internal wave or advective signal (see discussion in
Section 3.8). Their propagation causes fluctuations in the ocean surface height as
the waves propagate through the fluid columns. Fortunately, these external or
barotropic gravity waves are nearly two-dimensional in structure, and so they are
largely represented by the simpler dynamics of the vertically integrated fluid col-
umn.

Hence, if we can separate or split the fast vertically integrated dynamics and
kinematics from the slow and more complicated vertically dependent dynamics
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and kinematics, we stand the chance of substantially increasing the model’s effi-
ciency. Providing details for this split forms the bulk of the remainder of this chap-
ter.

10.3.4 General form for the momentum equation

Recall the equation we wish to time step is the semi-discrete momentum equation
(10.27), written here as

hzk (∂t + f ẑ∧ ) uzk = −δk1 uzk ∂t η− (hM ẑ ∧ uρ)zk −∇· (h u uρ)zk − (h∇p)zk/ρo

− [(w uρ)zk−1 − (κ uρ,z)zk−1 ] + [(w uρ)zk − (κ uρ,z)zk ] + (h Fu
horz)zk , (10.46)

where δk1 is the Kronecher delta function which is unity for k = 1 and zero other-
wise. To develop a strategy for time stepping this equation, we find it convenient
to write it in the shorthand form

hzk (∂t + f ẑ∧ ) uzk = −hzk ∇ ps/ρo + (h G̃)zk , (10.47)

where
(h G̃)zk = (h G)zk − δk1 uzk ∂tη (10.48)

and

(h G)zk = −(hM ẑ ∧ uρ)zk −∇ · (h u uρ)zk − (h∇pb)zk/ρo

− [(w uρ)zk−1 − (κ uρ,z)zk−1 ] + [(w uρ)zk − (κ uρ,z)zk ] + (h Fu
horz)zk . (10.49)

Gk incorporates the baroclinic pressure gradient, advection, and friction. Notably,
the velocity cell thicknesses h used for computing the various terms in Gk are taken
at baroclinic time τ , as are the other inviscid contributions such as pressure and
advection as appropriate for a leap-frog scheme. In contrast, the velocity cell thick-
nesses are computed at time τ −∆τ for the disspative terms, except for vertical dis-
sipation which is generally computed implicitly in time to allow for rapidly chang-
ing vertical processes.

For the vertically integrated column dynamics, we time step the vertically inte-
grated velocity

U = ∑
k

hk uk, (10.50)

instead of the depth averaged velocity

uz = U/D (10.51)

where
D = ∑

k
hk = H + η (10.52)

is the time dependent total depth of ocean fluid at a particular horizontal position.
The evolution of U takes the form

∂tU = u1 ∂tη+ ∑
k

hk ∂tuk

= − f ẑ ∧U− D∇ ps/ρo + G, (10.53)
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where equation (10.47) was used for ∂tuk, and the vertically integrated forcing is
given by

G = ∑
k

hk Gk (10.54)

with Gk defined in equation (10.49). With G = 0, the system reduces to the momen-
tum equation with inertia-gravity wave solutions. The gravity waves have speeds
of

cg =
√

g H, (10.55)

or about 100 − 200m s−1 in the deep ocean. These barotropic gravity waves de-
termine the discrete time step to be used when temporally discretizing the depth
integrated dynamics of fluid columns.

10.4 Basics of the time stepping algorithm

The focus in this subsection is on time and depth discretization, with Figure 10.2
summarizing the following split-explicit algorithm. Discrete baroclinic times and
time steps are denoted by the Greek τ and ∆τ , respectively, whereas the much
smaller barotropic analogs use the Latin t and ∆t. As stated in the introduction,
alternative schemes exist, such as the scheme recently proposed by Campin et al.
(2003). Our discussion documents a commonly used approach whose general al-
gorithm has been used by many modelers. It therefore serves our pedagogical pur-
poses.

10.4.1 Goals

Allowing the grid cell thicknesses to evolve introduces a fundamentally new ele-
ment to the traditional algorithms relevant for constant cells in z-coordinate models
(e.g., Bryan (1969), Semtner (1974), Cox (1984), Killworth et al. (1991), and Dukow-
icz and Smith (1994)). However, since we impose positive cell thicknesses for all
cells, including the surface, modifications to the constant cell approach should be
relatively modest. That is a goal of the algorithm.

More precisely, the main goals guiding the choices made in the following mo-
mentum equation algorithm are the following:

• Upon setting the baroclinic and barotropic time steps equal, the algorithm
reduces the split baroclinic/barotropic system to a non-split system. Besides
allowing the model to be used for detailed studies of tidal motions, running
an un-split algorithm is a powerful means of checking code integrity. Using a
leap-frog for the baroclinic and tracer portions necessitates a leap-frog for the
barotropic portion of the algorithm.

• The model should be stable upon taking tracer time steps longer than baro-
clinic time steps for purposes of spinning-up coarse model integrations.

• The surface height should be smooth to within the limitations inherent in the
presence of the B-grid splitting mode (e.g., Killworth et al. (1991), Pacanowski
and Griffies (1999), Griffies et al. (2003)).
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• Upon setting the baroclinic and tracer time steps equal, there should be exact
conservation of total tracer content.

• For all tracer time steps, there should be exact local tracer conservation. That
is, the tracer and mass/volume budgets must be compatible over each model
grid cell.

• The algorithm should involve local calculations in order to minimize the is-
sues of costly communication across parallel computers.

As described in Griffies et al. (2001) and Griffies et al. (2003), use of time filtering
in the three time step leap-frog scheme precludes the model from having an exact
discrete global tracer conservation property. All other properties are satisfied with
the scheme documented in the following. Campin et al. (2003) discuss conserva-
tion properties for free surface algorithms with differing time stepping approaches.
They show that moving away from the leap-frog allows schemes to conserve tracer
both locally and globally.

10.4.2 Baroclinic/barotropic split of the velocity

As with the approach of Bryan (1969), Semtner (1974), and Cox (1984), the velocity
at an arbitrary depth level k and baroclinic time τ ′ is split into two components

uk(τ ′) = Bkm(τ) um(τ ′) + (δkm − Bkm(τ)) um(τ ′). (10.56)

This equation is an identity valid for any baroclinic times τ ′ and τ and any operator
Bkm(τ). In Griffies et al. (2001), τ ′ = τ +∆τ was chosen since the baroclinic system
was solved prior to the barotropic. However, it is more convenient to solve the
barotropic system first as in Griffies et al. (2003) (MOM4), and so we here set τ ′ = τ ,
thus leading to

uk(τ) = Bkm(τ) um(τ) + (δkm − Bkm(τ)) um(τ) ≡ ûk(τ) + uz(τ). (10.57)

The utility of this velocity field split relies on the form of the baroclinicity operator

Bkm(τ) = δkm − D(τ)−1 hu
m(τ), (10.58)

where δkm is the Kronecker delta, summation over the repeated vertical level index
m is implied, and

D(τ) = ∑
k

hu
k (τ) = H + ηu(τ) (10.59)

is the ocean depth at baroclinic time τ over a column of velocity points, with H
the time independent resting ocean depth. In contrast to the rigid lid case, where
all cells have time independent thicknesses, the baroclinicity operator used here is
based on the instantaneous distribution of cell thicknesses at time τ . However, just
as in a rigid lid model, the baroclinicity operator eliminates the depth independent
part of a field, and leaves an approximation to the baroclinic portion. Hence, ûk is
an approximation to the baroclinic velocity field, and uz is an approximation to the
barotropic.
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Figure 10.2: Schematic of the split-explicit time stepping scheme for the barotropic
and baroclinic modes. Time increases to the right. Baroclinic time steps are de-
noted by τ − ∆τ , τ , τ + ∆τ , and τ + 2∆τ . The curved line represents a baroclinic
leap-frog time step, and the smaller barotropic time steps N ∆t = 2∆τ are denoted
by the zig-zag line. The vertically integrated forcing G(τ) (equation (10.53)) com-
puted at baroclinic time step τ represents the interaction between the barotropic
and baroclinic motions. While keeping G(τ) and the ocean depth D(τ) fixed, as
well as the tracer, density, and fresh water forcing fields fixed, a leap-frog integra-
tion carries the surface height and vertically integrated velocity from τ to τ + 2∆τ
using N barotropic time steps of length ∆t. Time averaging the barotropic fields
over the N + 1 time steps (endpoints included) centers the vertically integrated ve-
locity at the baroclinic time step τ + ∆τ . A baroclinic leap-frog time step carries
the surface height to τ + ∆τ using the convergence of the time averaged vertically
integrated velocity taken from baroclinic time step τ .

If the baroclinic/barotropic split introduced in equation (10.57) is successful, the
baroclinic velocity field ûk(τ) evolves on a slow time scale ∆τ and the barotropic
velocity uz(τ) evolves on the fast time scale

∆t = (2/N)∆τ , (10.60)

with N determined by the ratio of external to internal gravity wave speeds. The
overall method therefore proceeds by separately updating ûk(τ) and uz(τ) by ex-
ploiting the time scale split. Upon doing so, the right hand side of the identity
(10.57) is specified, hence allowing for an update of the full velocity field. The fol-
lowing sections provide details.

10.5 Time stepping the barotropic system

Let us assume knowledge of the full velocity and tracer fields at baroclinic time τ .
Hence, we can update the surface height and vertically integrated velocity with a
leap-frog scheme using the small barotropic time step ∆t. For the non-Boussinesq
model, mass conservation over a column of discrete fluid (see equation (9.26) in
Section 9.4) leads to the time discretized equation

ρz1 (τ) [η(b)(τ , tn+1)− η(b)(τ , tn−1)]

= 2∆t [−ρo∇ ·U(b)(τ , tn) + ρo qw(τ)−
Nk

∑
k=1

ht
k(τ) ∂τρzk (τ)] (10.61)
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U(b)(τ , tn+1)−U(b)(τ , tn−1)

= 2∆t [− f ẑ ∧U(b)(τ , tn)− D(τ)∇ p̃(b)
s (τ , tn) + G(τ)]. (10.62)

For the Boussinesq fluid, the surface height evolution takes on the simpler form

η(b)(τ , tn+1)− η(b)(τ , tn−1) = 2∆t [−∇ ·U(b)(τ , tn) + qw(τ)]. (10.63)

In these equations, a raised (b) denotes values of surface height and vertically in-
tegrated velocity updated with the small barotropic time steps. The τ time label
on η(b) and U(b) denotes the baroclinic time at which certain variables are held for
the duration of the barotropic time stepping over a single cycle. The variables held
fixed are the vertically integrated forcing G(τ), the tracer and density fields, the
fresh water flux qw(τ) and fresh water density ρo(τ), thickness of a grid cell ht

k(τ),
and total thickness of an ocean column D(τ). The time τ is also the time that sets
the barotropic time steps via

tn = τ + n∆t (10.64)

with n an integer. The density scaled surface pressure is evaluated via

p̃(b)
s (τ , tn) = g η(b)(τ , tn)ρ(τ)k=1/ρo. (10.65)

To get started, we assume the following initial conditions

η(b)(τ , tn=−1) = η(b)(τ , tn=0) = η(b)(τ), (10.66)

with

η(b)(τ) =
1

N + 1

N

∑
n=0

η(b)(τ − ∆τ , tn) (10.67)

the time averaged surface height taken from the previous barotropic cycle. Like-
wise,

U(b)(τ , tn=−1) = U(b)(τ , tn=0) = U(b)(τ), (10.68)

with

U(b)(τ) =
1

N + 1

N

∑
n=0

U(b)(τ − ∆τ , tn) (10.69)

the time averaged vertically integrated transport. Notably, we find no need to
introduce a Robert-Asselin time filter in the barotropic portion of the integration.
Additionally, because of the identification of the fields at tn=−1 with those at tn=0,
the very first time step of a barotropic cycle is a forward Euler step instead of a
leap-frog step.

Upon reaching tn=N = τ + 2∆τ , the vertically integrated velocity is time aver-
aged to produce the updated vertically integrated velocity at baroclinic time τ +∆τ

U(τ + ∆τ) ≡ U(b)(τ + ∆τ) =
1

N + 1

N

∑
n=0

U(τ , tn). (10.70)

The surface height on the new baroclinic time step is then determined via a baro-
clinic leap-frog using the following form

ρz1 (τ) (η(τ + ∆τ)− ηF(τ − ∆τ))

= 2∆τ [−ρo∇ ·U(τ) + ρo qw(τ)−
Nk

∑
k=1

ht
k(τ) ∂τρzk (τ)] (10.71)
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for the non-Boussinesq fluid, and

η(τ + ∆τ)− ηF(τ − ∆τ) = 2∆τ [−∇ ·U(τ) + qw(τ)] (10.72)

for the Boussinesq fluid. The use of this “big-leap-frog” scheme for the surface
height ensures compatibility between the mass/volume budgets and the tracer
budgets. More discussion of this point is provided in Chapter 9 (see in particu-
lar Section 9.2).

In general, some form of time filter is needed to maintain integrity of the surface
height field due to the leap-frog splitting mode (e.g.,Haltiner and Williams (1980))
in equations (10.71) and (10.72). We have tried various forms of such filtering, with
the following method discussed in Griffies et al. (2001) chosen due to its stability
and reasonably good maintenance of tracer conservation properties (see Griffies
et al. (2003))

ηF(τ) = η(b)(τ). (10.73)

Another approach tried was

ηF(τ) = η(τ) + (α/2) [η(b)(τ + ∆τ) + η(b)(τ − ∆τ)− 2 η(τ)], (10.74)

which is useful since it isolates all the time filtering aspects into the term multiplied
byα. This isolation allows for an easy check that global tracer conservation is exact
when eliminating tracer and surface height time filtering. However, in the general
case with a non-zero α, the filter (10.73) was found to be more conservative for
certain tests, and so is recommended.

10.6 Updating the baroclinic velocity

By construction, evolution of the velocity field ûk(τ) is unaffected by vertically in-
dependent forces, such as those from surface pressure gradients. Therefore, it is
sufficient to update the “primed” velocity

u′k(τ + ∆τ) = uR
k (τ − ∆τ) + 2∆τ [− f ẑ ∧ uk(τ) + G̃k(τ)], (10.75)

which represents a temporal discretization of the full momentum equation (10.47),
yet without the surface pressure gradient, thus allowing for stable use of the longer
baroclinic time step. The lagged velocity

uR
k (τ −∆τ) = uk(τ −∆τ) + (α/2) (uk(τ)− 2 uk(τ −∆τ) + uR

k (τ − 2∆τ)) (10.76)

is a Robert time filtered version of the full velocity field. A weak form of such filter-
ing, with α = 0.01, has been found sufficient in applications to suppress splitting
between the two leap-frog branches in the baroclinic system. It is also useful to
dampen fast dynamics that may partially leak through the baroclinicity operator
due to the generally imperfect separation between the slow and fast dynamics.

The baroclinic piece of the primed velocity u′k(τ + ∆τ) yields

ûk(τ + ∆τ) = Bkm(τ + ∆τ) u′m(τ + ∆τ), (10.77)

as can be shown by adding the missing surface pressure gradient to equation (10.75),
where it is annihilated by application of Bkm.
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To complete an update of the full velocity field, we add the updated baroclinic
velocity to the updated barotropic velocity

uk(τ + ∆τ) = ûk(τ + ∆τ) + U(τ + ∆τ)/D(τ + ∆τ). (10.78)

Knowledge of the updated velocity, along with updated tracer T(τ + ∆τ), allows
for construction of the vertically integrated forcing G(τ + ∆τ), and hence move-
ment onto the next time step. This completes a full split-explicit time step cycle.

10.7 Summarizing a model time step

We have now detailed a method whereby the momentum equations can be effi-
ciently stepped forward in time. The method, known as a split-explicit time stepping
approach, where “split” refers to the separation between the slow and fast dynam-
ics, and “explicit” refers to the use of an explicit in time scheme. This algorithm is
also known as an explicit free surface method. It has been found to be very useful
for ocean climate simulations. Because the previous discussion required many for-
mulae and may be considered somewhat opaque on first encounter, we summarize
here, without equations, a model time step using this algorithm as realized in the
MOM4 code.

10.7.1 Advection velocities

After initializing the model fields and boundary forcing, the advection velocities
are computed in order to construct advective fluxes of tracer and momentum. For
stepping forward the model fields to time τ + ∆τ , the advection velocities are con-
structed using the prognostic velocity field v at baroclinic time step τ . The horizon-
tal advective velocities for tracers are specified according to the needs of energetic
consistency (see Griffies et al. (2003) for a discussion). Horizontal advective veloc-
ities for momentum are then diagnosed from the tracer velocities according to a
conservative remapping scheme. Both of these points are detailed in Griffies et al.
(2003).

Vertical advective velocities for both the tracer and horizontal momentum fields
are diagnosed based on the requirements of mass or volume conservation over a
grid cell. For the Boussinesq fluid, this diagnosis requires only a calculation of
the convergence of the horizontal advective velocities onto the grid cell. For the
non-Boussinesq fluid, it is also necessary to incorporate the time tendency of the
density field within the cell. This time tendency is approximated by an extrapola-
tion method detailed in the Section 9.3, where we discussed the mass budget for a
cell.

10.7.2 Advective and diffusive fluxes

The advective velocities are used to calculate advective tracer and momentum fluxes.
Advective momentum fluxes are computed using the traditional second order scheme
as implied by energetic consistency (see Griffies et al. (2003)). Advective tracer
fluxes are computed using a tracer advection scheme, such as one of those docu-
mented in Pacanowski and Griffies (1999) (see also Durran (1999) for a pedagogical
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review). Additionally, it is necessary to compute fluxes arising from the parame-
terization of SGS processes. Discussion of the lateral SGS tracer fluxes is given in
Chapters 7 and 11–14. Horizontal SGS momentum fluxes are discussed in Chapters
15–17. Vertical fluxes also arise from diabatic processes, such as those dominant in
the surface and bottom boundary layers. The mixed layer schemes of Pacanowski
and Philander (1981) and Large et al. (1994) are commonly used in ocean climate
models such as MOM4 for computing vertical mixing coefficients.

For stability reasons, advective fluxes are computed on time step τ whereas
lateral diffusive fluxes are on time step τ − ∆τ . That is, the inviscid dynamics is
time stepped with a leap-frog whereas the dissipative dynamics is time stepped
with a single forward step. Vertical diffusive fluxes are also computed on time
step τ − ∆τ , unless they are computed implicitly in time to allow for large vertical
mixing coefficients without incurring problems with time stepping instabilities.

10.7.3 Tracers

Tracers evolve according to advection, diffusion, convection, and boundary forc-
ing. For coarse mesh models, the tracer equation can be time stepped with much
longer steps than baroclinic time steps since the tracer transport mechanisms are
far slower than either the inertial period or baroclinic gravity wave speed, both of
which affect our ability to increase the baroclinic time step. Long tracer time steps
help tremendously in the quest to reach equilibrium in the deep ocean, which can
take many thousands of model years. Details of the transient evolution, however,
are corrupted by using unequal time steps. The papers by Bryan (1984), Killworth
et al. (1984), and Danabasoglu et al. (1996) detail these issues.

There are two practical reasons to expect that future ocean climate models will
not stretch their tracer time step substantially larger than their baroclinic time step.
First, as the grid mesh is refined, advective speeds become comparable to the baro-
clinic gravity wave speeds. Hence, time step constraints for the tracer and baro-
clinic velocity become more comparable. In this case, stretching the tracer time step
longer than the baroclinic time step becomes less feasible.

As with the linear momentum, MOM4 time steps tracers using a leap-frog scheme
with a Robert-Asselin filter to suppress the computational mode. Details are pro-
vided in Chapter 9. Updating tracers before momentum provides for the updated
hydrostatic pressure p(τ + ∆τ). Having the updated pressure allows the leap-frog
time stepped momentum equations to exploit the pressure gradient averaging ap-
proach of Brown and Campana (1978). Pressure gradient averaging is a favored
approach of the Los Alamos Parallel Ocean Program (POP), as it can damp baro-
clinic gravity waves, thus allowing for an increase in model time step when gravity
waves set the most stringent CFL constraint.

10.7.4 Momentum

After tracers are updated, momentum can be time stepped according to the split-
explicit scheme described earlier in this chapter. Again, one method for speeding
up this part of the model is to employ the Brown and Campana (1978) pressure
gradient averaging approach for both the baroclinic and barotropic sub-systems.
However, pressure gradient averaging may not be useful if details of the gravity
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wave propagation are of interest. Tests should be run to compare the simulation
with and without pressure gradient averaging to garner confidence in the results.

At the end of the momentum time stepping, we have the updated velocity fields
as well as the updated ocean depth. This information is sufficient to then start the
next time step.

10.8 Rigid lid streamfunction method

The rigid lid streamfunction method was described in Bryan (1969) for use in Boussi-
nesq ocean models. This method has been remarkably versatile for z-coordinate
ocean climate models. Hence, we are motivated to provide here some comments
on this method, even though it is steadily becoming obsolete.

10.8.1 Volume transport streamfunction

The basic assumption underlying the rigid lid method is that the time tendency
of the ocean surface height is zero. Setting η,t = 0 eliminates the fast barotropic
gravity waves, and this is the key motivation for this assumption.

For the Boussinesq fluid, setting η,t = 0 leads to a balance between the diver-
gence of horizontal transport and surface fresh water forcing

∇ ·U = qw. (10.79)

Although Huang (1993) described a rigid lid method allowing for this balance,
most rigid lid models set the surface fresh water flux to zero, thus rendering U
divergence-free

∇ ·U = 0. (10.80)

Hence, the rigid lid Boussinesq model is fully volume conserving: all grid cells
conserve volume and there are no fluxes of volume across the boundaries. Corre-
spondingly, the vertical advective velocity (Section 9.3.1) vanishes at the surface.
Herein lies the first major limiting aspect of the rigid lid streamfunction method:
the effects of surface fresh water forcing must be incorporated into the model in an
indirect, and often unphysical, manner. In particular, the effects on salinity are im-
posed via virtual salt fluxes across the ocean surface (see Huang (1993) and Griffies
et al. (2001) for more discussion).

Since ∇ ·U = 0, we can specify U by a single scalar barotropic streamfunction

U = H uz = ∇∧ (ẑψ) = −ẑ ∧∇ψ. (10.81)

Note that in this expression, it is assumed that the depth of ocean fluid is equal
to the depth of a resting fluid H. However, this assumption is not strictly true
since η,t = 0 does not imply η = 0. Indeed, there is a non-zero surface or lid
pressure plid = ρo g η which, although not needed for the streamfunction method,
is computed via the rigid lid surface pressure method of Smith et al. (1992), Dukowicz
et al. (1993), and Pinardi et al. (1995).

The barotropic streamfunction is specified to within a constant, and so only
differences are physically relevant. In particular, Stokes’ Theorem implies that the
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vertically integrated advective transport between two points is given by

Tab =
∫ b

a
dl n̂ ·

∫ 0

−H
dz u = ψb −ψa, (10.82)

where dl is the line element along any path connecting the points a and b, and n̂
is a unit vector pointing perpendicular to the path in a rightward direction when
facing the direction of integration. As written, Tab has units of volume/time, and so
it represents a volume transport. Therefore, the difference between the barotropic
streamfunction at two points represents the vertically integrated volume transport
between the two points. It is for this reason that the barotropic streamfunction is
sometimes called the volume transport streamfunction. Note that Bryan (1969) de-
fined the barotropic streamfunction with an extra factor of the Boussinesq refer-
ence density ρo, such that his mass transport streamfunction has the dimensions of
mass/time rather than volume per time. The difference is trivial for a Boussinesq
fluid.

10.8.2 Time stepping the streamfunction

To make use of the streamfunction ψ for time stepping the dynamics, we need to
develop a prognostic equation for ψ. Such is formed by taking the curl of the mo-
mentum equation describing the dynamics of fluid columns (Section 3.8), and so
forming the barotropic vorticity equation. This equation involves an elliptic opera-
tor that must be inverted in order to specify the updated transport U(τ +∆τ) given
the updated streamfunctionψ(τ +∆τ). Inverting the elliptic operator is quite diffi-
cult when forcing the ocean with realistic time dependent fluxes and using realistic
geometry with multiple islands and bottom topography with realistic steepness.
Herein lies the second major problem with the rigid lid streamfunction method: it
leads to a difficult elliptic problem when running realistic ocean climate simula-
tions. Furthermore, the elliptic problem involves specification of Dirichlet bound-
ary conditions (the island integrals), and such non-local boundary conditions are
very inefficient to solve on parallel computer architectures.

10.8.3 Closing comments

Given the limitations of the rigid lid streamfunction documented here, most ocean
climate modelers are moving towards the less restrictive free surface methods. We
documented a split-explicit approach in this chapter, and it notably does not in-
volve the inversion of an elliptic operator. In contrast, the split-implicit approaches
(e.g., Dukowicz and Smith (1994) and Campin et al. (2003)) involve an elliptic oper-
ator that must be inverted. In general, elliptic operator inversions are less efficient
on parallel computer architectures than split-explicit algorithms, with Griffies et al.
(2001) providing examples where this is the case.
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Z-MODEL NEUTRAL PHYSICS

One of the most important realizations of ocean climate modelers in the past
two decades is the importance of closure terms in the tracer equation for coarsely
resolved z-model simulations. The early approach whereby one uses a diffusion
operator oriented according to geopotential surfaces will, over time, greatly com-
promise the simulation’s physical integrity due to spuriously large mixing between
simulated water masses. Given the highly ideal fluid dynamics of the ocean inte-
rior, most of the tracer transport by mesoscale eddies occurs along a locally refer-
enced potential density direction, otherwise known as a neutral direction. Changing
the orientation of the diffusion operator from horizontal-vertical to neutral-vertical
greatly improves the simulation’s realism. Besides a symmetric diffusive aspect to
the sub-grid scale (SGS) tracer transport, mesoscale eddies stir tracers in a reversible
manner, and this stirring corresponds to an anti-symmetric component to the SGS
tracer transport tensor. Adding this skew-diffusive component again improves the
simulations.

The combination of neutral diffusion and skew-diffusion, and various other re-
lated schemes whose structure depends on neutral directions, are generally termed
neutral physics schemes in this book. It is interesting to note that many isopyncal
models have been forced, through numerical constraints, to employ similar SGS
operators to those neutral physics schemes now ubiquitous in z-models.

With the extremely small levels of irreversible mixing of potential density classes
within much of the ocean interior, it is crucial that ocean climate models respect
these levels in both its explicit physical closure schemes as well as the numerical re-
alizations of all tracer transport operators. Unfortunately, refining grid resolution
so that mesoscale eddies are admitted can actually increase the problems with spuri-
ous mixing in z-models. The reason is that an explicitly resolved quasi-geostrophic
turbulent flow cascades tracer variance towards the grid scale, and this variance
must be dissipated without incurring unphysically large levels of spurious diapyc-
nal mixing. Consequently, just as for the coarsely resolved models, refined models
are highly dependent on their SGS operators, even when the operators simply aim
to satisfy the needs of numerical closure. A cavalier choice for how to close the equa-
tions is not sensible.

To maintain a small level of spurious mixing, one possible route for eddying
ocean models is to continue using neutral physics operators introduced for phys-
ical reasons at the coarse resolution. At the fine resolution, these operators take
on a role as a numerical closure by dissipating variance without admitting large
spurious levels of mixing. This perspective motivates our emphasis on numeri-
cally realizing neutral physics operators with the highest degree of physical and
numerical integrity since they are conjectured here to be appropriate for all model
resolutions. Furthermore, because of the strong sensitivity of simulations to details
of the neutral physics scheme, we provide a thorough treatment of all facets in this
part of the book.

In regards to discretizing the neutral diffusion operator, it is useful to highlight a
mathematical connection between this operator and the friction operator discussed
in Part V. Namely, both operators are self-adjoint. Hence, they correspond to the
functional derivative of a sign definite functional. Having a functional formulation
provides for a “higher principle” that can be used when discretizing these opera-
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tors. This principle is akin to an energy principle which is often used to guide the
discretization of the inviscid part of the model equations. For the neutral physics
and friction operators, the principle states that the neutral diffusion and friction
operators should dissipate, respectively, variance and energy for all admitted flow
features, and the skew diffusion operator should keep variance unchanged. This
principle helps us to organize the many steps encountered when deriving the dis-
crete operators, and thus it aids in our quest to remove arbitrary steps often made
when casting the continuum equations onto the lattice.

The chapters in this part of the book aim to bring together the ideas, both physi-
cal and numerical, comprising neutral physics in z-models. There are many details
and choices. Some of these issues are well known, yet others are often hidden. Care
is given to expose many of the issues in hopes that the reader will either come to
understand what may appear to be an arbitrary choice, or to find fault with some
choice and to thus find a better approach.
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The purpose of this chapter is to expose some of the basic physical and math-
ematical aspects of tracer transport associated with neutral physics in z-models.
Additionally, we argue here that neutral physics operators, though motivated from
the mesoscale parameterization problem, are of use for all z-coordinate model res-
olutions. Hence, we work here within the context of the model equations derived
in Chapter 6 resulting from an average over the small scales of motion.

11.1 The general utility of neutral physics operators

As discussed in Chapter 7, the ocean is very close to an ideal fluid away from
boundaries. By this we mean that tracer transport in the ocean interior, dominated
by mesoscale eddies, occurs predominantly along neutral directions (Section 11.6),
and the mass of fluid living between two isopycnals remains close to constant. Re-
gardless the ocean model mesh size, it is crucial to respect this property within the
model’s tracer transport operators.
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When running coarse mesh models, there are important sub-grid scale (SGS)
fluxes that must be parameterized. Ocean climate model simulations are very sen-
sitive to the form of these parameterizations. The work of Solomon (1971), Redi
(1982), Olbers et al. (1985), McDougall and Church (1986), McDougall (1987a), Gent
and McWilliams (1990), Gent et al. (1995), Griffies et al. (1998), Griffies (1998), and
others stress the importance of neutral operators, whereby diffusion and skew dif-
fusion is oriented according to the neutral directions. The use of such operators
in coarse z-models has greatly improved their physical integrity (see Griffies et al.
(2000a) for a review).

Models of refined grid mesh that admit time dependent quasi-geostrophic ed-
dies tranform tracer variance towards the grid scale. Hence, such models require
SGS operators or implicit dissipation within an advection scheme to absorb tracer
variance at the grid scale. Otherwise, the simulation degenerates into a sea of grid
noise. Coupled to this need to dissipate variance, we must also maintain physically
very small levels of diapycnal mixing in the ocean interior. Roberts and Marshall
(1998) and Griffies et al. (2000b) showed how these two requirements are often at
odds with one another in z-coordinate ocean models. Notably, relying on horizon-
tally oriented SGS operators or dissipative advection schemes to absorb grid scale
variance can introduce unphysically large levels of diapycnal mixing, thus com-
promising the physical integrity of the solution, especially those run for climate
purposes.

Hence, alternatives must be considered. We contend that the same neutral oper-
ators employed at coarse resolution, motivated from such ideas as those introduced
in Chapter 7, also provide a suitable numerical closure for fine resolutions when run
with suitably reduced diffusivities. Hence, even for eddying models, neutral physics
schemes represent good z-coordinate modeling practice. Stated alternatively, whatever
may arise from the ultimate in eddy parameterization scheme(s), it is conjectured
that the basics of the neutral diffusion scheme of Redi (1982) and the skew diffu-
sion scheme of Gent and McWilliams (1990) and Gent et al. (1995) will remain of
primary importance for ocean climate models of all resolutions–they are the least
common denominator.

It is worth highlighting that isopycnal models must run with some means to
smooth potential density surfaces, or equivalently to smooth density interface height.
Otherwise, the layers can, and will, develop negative thicknesses. Since interface
height smoothing is directly analogous to skew-diffusion of potential density∗, all
isopycnal models use some form of Gent and McWilliams (1990). When transport-
ing tracers, they likewise diffuse tracers along isopycnal directions, in a manner
analogous to that proposed by Solomon (1971) and Redi (1982).

In the context of the above conjecture regarding the universal utility of neu-
tral physics schemes in z-models, we speculate on the possible utility of schemes
that prompt one to insert eddy-stirring effects into the momentum equation as an
enhanced vertical friction (see, e.g., Greatbatch and Lamb (1990) and Greatbatch
(1998)), rather than the commonly implemented eddy-induced advection or skew-
sion applied directly to the tracer equation. The vertical friction schemes are abia-

∗Note that for flat bottom rigid lid models, interface height smoothing is equivalent to thickness
diffusion. However, in general it is crucial to note the difference (see, e.g., Holloway (1997)), with
interface height smoothing the general method used in both isopycnal and z-models using the Gent
and McWilliams (1990) scheme.



11.2. SUMMARY OF THE MASS AND TRACER BUDGETS 243

batic, by construction, since they only affect the momentum equation. This prop-
erty has its advantages numerically since we need not worry about spurious di-
apycnal mixing commonly associated with numerical truncation errors in the SGS
tracer operator. However, the effects of vertical momentum friction on density are
only available indirectly via geostrophy. Consequently, it is unclear whether ver-
tical friction will prove sufficient to suppress grid-scale power in the density field
associated with dispersive advection schemes and/or a quasi-geostrophic cascade.
Presently, no published studies document the ability of enhanced vertical friction
to satisfy the needs of both physical closure and numerical closure in global ocean
models.

11.2 Summary of the mass and tracer budgets

Mass and tracer budgets for unaveraged fluid parcels were derived in Chapters 3
and 4

ρ,t + ρo∇ · ṽ = 0 (11.1)
(ρC),t + ρo∇ · (ṽ C) = 0, (11.2)

where sources and molecular tracer diffusion are ignored for brevity, and

ρo ṽ = ρ v (11.3)

is the linear momentum per volume of a fluid parcel. Compatibility between mass
and tracer budgets manifests by having the tracer budget reduce to the mass budget
in the case when the tracer field is everywhere constant.

In chapter 6 we derived the ensemble mean primitive equations, with the en-
semble mean mass and tracer budgets

〈ρ〉,t + ρo∇ · 〈ṽ〉 = 0 (11.4)
(〈ρ〉 〈C〉ρ),t + ρo∇ · (〈ṽ〉 〈C〉ρ) = −ρo∇ · 〈F̃sgs〉 (11.5)

where the SGS tracer flux is given by

ρo F̃sgs = ρC′ρ v′ρ (11.6)

and interior sources of tracer are again omitted for brevity. To reach the averaged
tracer budget, we introduced the density weighted ensemble mean fields 〈ρ〉〈C〉ρ =
〈ρC〉 and the fluctuation C′ρ = C− 〈C〉ρ that satisfies 〈ρC′ρ〉 = 0. Similar definitions
apply to the density weighted velocity field.

For our concerns, the transport arising from ρC′ρ v′ρ dominates that from molec-
ular diffusion, so molecular diffusion is assumed to be incorporated into F̃sgs with-
out loss of generality. For those models not resolving mesoscale eddies, the piece
of F̃sgs associated with mesoscale eddies is interpreted in a manner introduced in
Chapter 7 and further described by McIntosh and McDougall (1996), McDougall
and McIntosh (2001), and Greatbatch and McDougall (2002). For those models that
do resolve mesoscale eddies, we argued in Section 11.1 that the forms motivated
by the eddy closure problem are also of relevance for these refined models. We
therefore base our discussions in this chapter on this hypothesis, thus allowing for
a unified treatment of the neutral tracer operators for all grid resolutions.
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11.3 Compatibility in the mean field budgets

As noted above, compatibility between mass and tracer budgets for unaveraged
fluid parcels manifests by having the tracer budget reduce to the mass budget in
the case when the tracer field is everywhere constant. We insist on an analogous
compatibility for the mean fluid so that the mean fluid retains mass and tracer con-
servation regardless the SGS fluxes. Doing so constrains the form of the SGS flux.

Compatibility for the ensemble averaged mass and tracer budgets is satisfied if
∇ · 〈F̃sgs〉 = 0 when 〈C〉ρ is everywhere constant. In the general case of a nontrivial
mean tracer field, compatibility is maintained when the SGS tracer flux takes the
form

〈F̃sgs〉 = ∇ ∧ B− J · ∇ 〈C〉ρ, (11.7)

where B is an arbitrary vector field, and J is a second order tracer transport tensor. In
general, the transport tensor is a function of the fluid flow and tracer field. Terms of
higher order in the tracer derivative also satisfy compatibility, yet they are dropped
for simplicity.

Since the divergence of ∇ ∧ B vanishes, it does not contribute to the time ten-
dency of density weighted tracer. The freedom to add or subtract a curl to the tracer
flux is exploited in the following. For present purposes it is dropped, thus bringing
the m’th component of the SGS flux to the form

〈F̃m
sgs〉 = −Jmn ∂n 〈C〉ρ, (11.8)

where Jmn are components to the tracer transport tensor J, and the summation con-
vention is assumed, in which case repeated indices are summed over their range.

Given these results, the mapping defined by Table 6.1 leads to the mass and
tracer equations to be discretized by the ocean model

ρ,t + ρo∇ · v = 0 (11.9)
(ρC),t + ρo∇ · (v C) = −ρo∇ · F (11.10)

where
Fm = −Jmn C,n (11.11)

is the model’s version of the SGS tracer flux. Notably, both the resolved and SGS
tracer transport operators take the same mathematical form for the non-Boussinesq
and Boussinesq fluids. The remainder of this chapter discusses mathematical and
physical properties of this tracer flux.

11.4 The SGS transport tensor

We establish some general properties of the second order tracer transport tensor J,
decomposed as

Jmn = (Jmn + Jnm)/2 + (Jmn − Jnm)/2 = Kmn + Amn, (11.12)

where Kmn is the symmetric part, and Amn is the anti-symmetric part. The tracer
equation therefore takes the form

(ρC),t + ρo · (v C) = ρo∇ · [(K + A) · ∇C] (11.13)

As seen in the following, the transport properties of the symmetric and anti-symmetric
tensors are quite distinct.
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11.4.1 Evolution of tracer variance

We start by examining the behaviour of tracer vaiance, defined as

V = M−1
∫

(ρ dV) C2 −
(

M−1
∫

(ρ dV) C
)2

, (11.14)

where
M =

∫

(ρ dV) (11.15)

is the ocean fluid mass. Our concern here is how tracer variance evolves from the
effects of SGS fluxes. Hence, it is sufficient to consider the case of an ocean with con-
stant fluid mass and constant tracer mass. Tracer variance thus evolves according
to evolution of the first term in equation (11.14), prompting us to drop the second
term and write

V = M−1
∫

dA
η
∫

−H

dzρC2. (11.16)

Use of mass conservation in the form ρ,t + ρo∇ · v = 0 leads to the evolution equa-
tion

(ρC2),t + ρo∇ · (v C2) = −2ρo C∇ · F. (11.17)

Use of the surface and bottom kinematic boundary conditions

ρ η,t + ρo u · ∇η = ρo w + ρw qw at z = η (11.18)
u · ∇H + w = 0 at z = −H (11.19)

and manipulations similar to those performed in the calculation of global energy
budgets in Section 4.5 lead to

M V,t =
∫

z=η
dA (ρw qw C2 − ρo C F · N̂) + ρo

∫

dA
η
∫

−H

dz∇C · F (11.20)

where N̂ = (−∇η, 1) is an orientation vector at the ocean surface, and we assumed
there is no SGS flux of tracer at the ocean bottom.

11.4.2 Diffusive and skew-diffusive tracer fluxes

In addition to the affects from surface terms, tracer variance in equation (11.20)
changes according to the global integral of

∇C · F = −(Amn + Kmn) C,n C,m = −Kmn C,n C,m (11.21)

where Amn C,n C,m = 0 due to the anti-symmetry of Amn and the symmetry of
C,n C,m. A particular form of the symmetric transport tensor of use in ocean model-
ing is one that is positive semi-definite, for which we have

∇C ·K · ∇C = C,m Kmn C,n ≥ 0. (11.22)
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Transport tensors satisfying this property are known as diffusion tensors. The asso-
ciated diffusive flux is directed down the gradient of the tracer

∇C · F ≤ 0. (11.23)

Such fluxes are dissipative since within the ocean interior, they reduce the value
of
∫

(ρ dV) C2n, with n a positive integer. Symmetric negative definite SGS tracer
transport tensors lead to unstable simulations, unless they are suitably balanced by
a companion dissipation operator. We only consider positive semi-definite sym-
metric transport tensors in the following.

The anti-symmetric transport tensor identically dropped out from the tendency
for tracer variance. The reason is that its associated tracer flux Fm = −Amn C,n is
directed perpendicular to the tracer gradient

F · ∇C = −Amn C,n C,m = 0. (11.24)

Tracer fluxes with this orientation are denoted skew fluxes in the following. Skew
fluxes do not alter the value of

∫

(ρ dV) C2n. As such, they are akin to advection,
which acts to stir the tracer without mixing.

11.5 Advection and skewsion

There are two complementary ways of interpreting the transport process associated
with an anti-symmetric tensor Amn: either via the convergence of an advective flux,
known as advection, or the convergence of a skew-flux, called here skew-diffusion or
skewsion. These issues were presented in Section 7.2. Because of the importance of
understanding these two perspectives in the formulation of neutral physics opera-
tors, and motivated by a desire to keep parts of this book effectively independent of
one another, we consider here an abbreviated version of the discussion given more
completely in Section 7.2.

To start, we consider an arbitrary three-dimensional divergence-free velocity
field ∇ ·V = 0. The divergence-free condition represents a diagnostic relation, or
constraint, that reduces the functional degrees of freedom for the velocity field from
three to two. This constraint can be satisfied identically by introducing a vector
streamfunction

V = ∇ ∧ Υ. (11.25)

The vector streamfunction Υ is not completely specified by this relation, since the
equally valid streamfunction

Υ′ = Υ+∇λ (11.26)

corresponds to the same velocity field V. The arbitrary scalar function λ is known
as a gauge function, and the freedom to modify the vector streamfunction through
the addition of λ is known as gauge freedom.

The advective tracer flux

F(a) = V C = (∇ ∧ Υ) C (11.27)

can be related to a skew flux

F(s) = −∇C ∧ Υ = F(a) − F(r) (11.28)
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through exploitation of the identity

V C = (∇ ∧ Υ) C = −∇C ∧ Υ+∇ ∧ (CΥ). (11.29)

F(s) qualifies as a skew flux since it is directed perpendicular to the tracer gradient
F(s) · ∇C = 0. Since the rotational flux

F(r) = ∇ ∧ (CΥ) (11.30)

has a vanishing divergence, the divergence of the skew and advective fluxes is iden-
tical

∇ · F(s) = ∇ · F(a). (11.31)

Hence, if these fluxes enter into the evolution of a tracer, one may choose to use the
skew flux or advective flux in describing the evolution. That is,

(ρC),t + ρo∇ · (v C) = −ρo∇ · (V C)
= ρo∇ · (∇C ∧ Υ). (11.32)

We make contact with results in Section 11.4.2 by introducing the anti-symmetric
transport tensor

Fm
(s) = −εmnp C,n Υp = −Amn C,n (11.33)

where Amn represents a reorganization of the vector streamfunction

Amn = εmnp Υp =





0 Υ3 −Υ2
−Υ3 0 Υ1
Υ2 −Υ1 0



 , (11.34)

and εmnp is the totally anti-symmetric Levi-Civita tensor defined in Section 18.12.
For our applications, we exploit gauge freedom by specifying a vertical gauge in
which Υ3 = 0.

11.6 Neutral tracer fluxes

In the formulation of neutral physics transport operators in a z-model, it is useful
to understand both how neutral directions are determined, and how the geometry
of fluxes aligned according to these directions relate to the fixed x, y, z directions. In
particular, we are frequently concerned with rotation from the z-coordinate frame
to neutral directions.

11.6.1 Specifying the neutral directions

As discussed in Section 8.2.1, neutral directions represent directions in which the
adiabatic displacement of a fluid parcel experiences no resistance from buoyancy
forces. That is, neutral directions are parallel to lines of constant buoyancy. Mc-
Dougall (1987a) systematically defined these directions and noted how they can
differ from the certain potential density surfaces in many parts of the ocean.
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In a fluid with a linear equation of state, buoyancy and density are linearly
proportional. In this case, neutral directions are tangent to the density surface, and
so are orthogonal to the local normal given by

n̂ = ρ̂ =
∇ρ
|∇ρ| . (11.35)

In a fluid with a nonlinear equation of stateρ = ρ(θ, s, p), such as seawater, pressure
effects make it necessary to carefully specify how one computes density gradients
to determine neutral directions. In particular, it is necessary to perform the gradient
operation in a manner that removes pressure effects, just as done when checking for
gravitational stability. That is, with pressure held fixed (i.e., locally referenced),

∇ρ = ∇θ
(

∂ρ
∂θ

)

s,p
+∇s

(

∂ρ
∂s

)

θ,p
= ρ (−α∇θ+β∇s). (11.36)

In these relations, θ is the potential temperature, s is the salinity, p is the pressure,
and partial derivatives of density are taken with the specified variables held fixed.
The functions

α = −1
ρ

(

∂ρ
∂θ

)

s,p
(11.37)

and

β =
1
ρ

(

∂ρ
∂s

)

θ,p
(11.38)

are thermal expansion and saline contraction coefficients. These functions can typ-
ically be determined analytically from an empirical expression for the equation of
state, and such is useful to do in a numerical model. Note that the local normal is
perpendicular to potential temperature surfaces when salinity is uniform.

As articulated by McDougall (1987a), neutral surfaces represent an accumulation
of tangents to locally referenced potential density surfaces. However, McDougall
and Jackett (1988) showed that due to pressure effects, neutral surfaces possess a
helical topology. This nontrivial topology precludes neutral surfaces from being a
useful means to partition the vertical direction in ocean models. Instead, it is possi-
ble only to unambiguously determine the locally defined neutral direction at each
point in the ocean. An approximation to such directions is realized in z-models.
The helical nature of neutral surfaces leads potential density ocean models∗ to have
isopycnal surfaces deviating from neutral.

11.6.2 Geometric relations for stably stratified density layers

Figure 11.1 shows a region on a locally referenced potential density surface. At
an arbitrary point along this surface, the unit normal n̂ and tangent t̂ vectors are
shown, along with the angle δ between the tangent and the horizontal axis, or
equivalently between the normal and the vertical. The following considerations
assume that the local tangent has some nonzero component in the horizontal direc-
tions, which is the case for a stably stratified fluid.

∗Such models are based on a single globally defined potential density coordinate to partition the
vertical.
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In the two-dimensional x-z plane, an arbitrary vector aligned with the local tan-
gent takes the form

F = |F| t̂ = F(x) (x̂ + S ẑ), (11.39)

where
F(x) = |F| cos δ (11.40)

is the horizontal component of the vector, and

S = tan δ = z,x = −ρ,x/ρ,z (11.41)

is the slope of the neutral direction with respect to the horizontal. In three-dimensions,
this slope takes the form

S = ∇ρz = −
(

∇zρ

ρ,z

)

= −
(

−α∇zθ+β∇zs
−αθ,z +β s,z

)

, (11.42)

where ∇ρ represents the horizontal gradient taken along the neutral direction, and
∇z is the horizontal gradient along a constant z surface.

Given these general results, an arbitrary flux oriented parallel to the neutral
direction at an arbitrary point in the ocean has horizontal F(h) and vertical F(z)

components related via
F(z) = S · F(h). (11.43)

n
z

t

x

ρ

δ

Figure 11.1: Geometry of a locally referenced potential density surface ρ = const.
At any point along the surface, a local normal n̂ = ρ̂ and tangent t̂ can be defined,
with δ being the angle of the tangent from the horizontal, and the angle of the
normal from the vertical. At the pressure where the locally referenced potential
density surface is defined, the local tangent defines the neutral direction.

11.6.3 Geometric relations for arbitrarily stratified density layers

The previous geometric analysis, restricted to stably stratified density layers, is suf-
ficient for large-scale ocean modeling. Nonetheless, in order to understand the geo-
metric basis for the Redi diffusion tensor (Redi (1982)), we proceed in the following
more general manner where neutral directions can be arbitrarily oriented.

For this purpose, we consider the symmetric diffusion tensor representing along
and across neutral mixing given in the projection operator form

Kmn = AI(δmn − ρ̂mρ̂n) + ADρ̂
mρ̂n, (11.44)
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where ρ̂m are components to the local normal ρ̂ to the locally referenced potential
density surface. The isoneutral and dianeutral diffusivities AI and AD are non-
negative and can in general be functions of space-time. Although not written such
in her paper, this is indeed the Redi (1982) diffusion tensor, as noted by Olbers et al.
(1985) and Griffies et al. (1998).

The diffusion flux Fm = −Kmn C,n resulting from the Redi diffusion tensor takes
the form

F = −AI [∇C− ρ̂ (ρ̂ · ∇C)]− AD ρ̂ (ρ̂ · ∇C). (11.45)

The first term, ∇C − ρ̂ (ρ̂ · ∇C), is perpendicular to the local normal ρ̂, and so it
represents that part of the tracer field oriented parallel to the neutral direction. The
second term, ρ̂(ρ̂ · ∇C), is parallel to the local normal, and so it represents that
part of the tracer field perpendicular to the neutral direction. This result renders an
intuitive geometric interpretation for the Redi diffusion tensor.
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The purpose of this chapter is to follow-up on the discussion in Chapter 11.
Here, we further detail mathematical and physical properties of the neutral diffu-
sion scheme of Redi (1982) and the skew-diffusion scheme of Gent and McWilliams
(1990), Gent et al. (1995), and Griffies (1998). We also introduce some notions rele-
vant for determining the value for the diffusivities used to set the magnitude of the
neutral physics fluxes. We close this chapter with a discussion of biharmonic tracer
operators, and argue for their lack of utility for ocean climate modeling.

12.1 Neutral diffusion

From the standpoint of tracer transport via mesoscale eddies, a natural set of coor-
dinates are those defined with respect to the neutral directions. These coordinates
define what is termed here the neutral frame. Diffusive transport in this frame is
assumed to be diagonal in the formulation of Redi (1982), with diffusion along the
neutral directions on the order of 108 times greater than dianeutral diffusion.

The simplest and most elegant way to derive the neutral diffusion tensor is
through the projection operator form given by equation (11.44). The diffusion ten-
sor is written down by inspection based on assumptions of the strength and orien-
tation of the diffusive fluxes. Nonetheless, it is useful for many purposes to present
the rotational approach used by Redi (1982) to derive this tensor. That is the pur-
pose of this section. In addition, we highlight a key balance between the neutral
diffusive fluxes of active tracers. Maintaining this balance has proven to be crucial
for realizing a numerically stable neutral diffusion scheme (Griffies et al. (1998)).
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12.1.1 Two bases of unit directions

As in Sections 19.12.3 and 19.11.1, we find it useful to use physical tensor components
to represent tensors. Physical components each have the same dimensions, and
they represent the components to a tensor as projected onto a basis of dimensionless
unit directions êm, where m = 1, 2, 3 for the three-dimensional spaces considered
here.

There are two sets of unit directions defining the coordinate frames of refer-
ence considered here. The first one, termed here the z-level frame, is defined by the
dimensionless unit directions

ê1 = x̂ (12.1)
ê2 = ŷ (12.2)
ê3 = ẑ, (12.3)

where ẑ is the usual vertical direction taken anti-parallel to gravity, whereas x̂ and ŷ
represent generalized orthogonal horizontal directions. For example, with spheri-
cal coordinates, x̂ is in the longitudinal direction and ŷ is in the latitudinal direction.
More general directions are available in MOM4 through the use of generalized or-
thogonal coordinates (see Section 19.12 or 19.11).

The second reference frame is defined by the dimensionless unit directions

ê1 =
ẑ ∧ ∇ρ
|ẑ ∧ ∇ρ| (12.4)

ê2 = ê3 ∧ ê1, (12.5)

ê3 = ρ̂ =
∇ρ
|∇ρ| , (12.6)

where ∇ρ is computed as in equation (11.36) where pressure effects are removed.
These three directions define the neutral reference frame determined by the fluctuat-
ing geometry of a locally referenced isopycnal surface. A similar reference frame
was discussed in Section 5.4 in the chapter on generalized vertical coordinates.

Both sets of basis directions define orthonormal reference frames. Hence, the
transformation between the two frames is provided by a rotation matrix, which is
an orthogonal matrix (unit determinant and inverse given by the transpose). This
transformation can be interpreted in terms of Euler angles as discussed by Redi
(1982).

As a tensor equation, the transformation between reference frames is written

êm = Λm
m êm, (12.7)

where the summation convention is employed. The components of the transforma-
tion matrix are directional cosines determined via

Λm
m = êm · êm, (12.8)

where unit directions do not distinguish between raised and lowered indices. Sub-
stituting the explicit forms for the two bases, and organizing components of the
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transformation into a matrix-vector form, leads to

(ê1 ê2 ê3) = (ê1 ê2 ê3)









Sy
S

Sx
S
√

1+S2 − Sx√
1+S2

− Sx
S

Sy

S
√

1+S2 − Sy√
1+S2

0 S√
1+S2

1√
1+S2









(12.9)

where

S = ∇ρz = −z,ρ∇zρ = (Sx, Sy, 0) = (−ρ,x/ρ,z,−ρ,y/ρ,z, 0) (12.10)

is the neutral slope vector (see also equation (11.42) and Figure 11.1) with magni-
tude S.

12.1.2 Diffusion in the neutral frame

In the neutral frame, the gradient of a tracer is written

∇C = ê1 ∂ê1
C + ê2 ∂ê2

C + ê3 ∂ê3
C, (12.11)

where derivatives are taken along the three orthogonal directions. Following Redi
(1982), downgradient diffusion in this frame is diagonally oriented, in which case
the diffusion tensor takes the form

Kmn =





AI 0 0
0 AI 0
0 0 AD



 , (12.12)

which can also be written in terms of projection operators

Kmn = AI(δmn − ρ̂mρ̂n) + ADρ̂
mρ̂n, (12.13)

as noted in Section 11.6.3. Note that in the neutral frame, ρ̂ = (0, 0, 1). The diffusion
operator is thus written

R(C) = ∂ê1
(AI∂ê1

C) + ∂ê2
(AI∂ê2

C) + ∂ê3
(AD∂ê3

C). (12.14)

12.1.3 Diffusion in the z-level frame

In order to describe the neutral diffusion process in the z-level frame of reference,
the components of the diffusion tensor K must be transformed. The simplest ap-
proach is to note that ρ̂ = ∇ρ/|∇ρ| in the z-level frame, and to substitute this into
the projection operator form of the tensor given by equation (12.13).

Another approach, employed by Redi (1982), is to use the familiar rules of ten-
sor analysis (e.g., Aris (1962) or Chapter 18) to transform the representation of the
second order diffusion tensor from the neutral frame to z-level frame. In this way,
the diagonal components Kmn of the diffusion tensor in the neutral frame are trans-
formed to the z-level frame through

Kmn = Λm
mKmnΛn

n, (12.15)
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where the transformation matrix Λ has components given by equation (12.9).
Written as matrices with Λ having components Λn

n, this transformation takes
the form K = ΛKΛT, where K has the diagonal form given in equation (12.12).
Performing the matrix multiplication

Kmn =








Sy
S

Sx
S
√

1+S2 − Sx√
1+S2

− Sx
S

Sy

S
√

1+S2 − Sy√
1+S2

0 S√
1+S2

1√
1+S2













AI 0 0
0 AI 0
0 0 AD













Sy
S − Sx

S 0
Sx

S
√

1+S2

Sy

S
√

1+S2
S√

1+S2

− Sx√
1+S2 − Sy√

1+S2
1√

1+S2









(12.16)

yields the diffusion tensor in the z-level system given by Redi (1982)

Kmn =
AI

(1 + S2)











1 +
ρ2

,y+ερ2
,x

ρ2
,z

(ε− 1)ρ,xρ,y

ρ2
,z

(ε− 1)ρ,x
ρ,z

(ε− 1)ρ,xρ,y

ρ2
,z

1 +
ρ2

,x+ερ2
,y

ρ2
,z

(ε− 1)ρ,y
ρ,z

(ε− 1)ρ,x
ρ,z

(ε− 1)ρ,y
ρ,z

ε+ S2











, (12.17)

which can also be written

Kmn =
AI

(1 + S2)





1 + S2
y +εS2

x (ε− 1)SxSy (1−ε)Sx

(ε− 1)SxSy 1 + S2
x +εS2

y (1−ε)Sy

(1−ε)Sx (1−ε)Sy ε+ S2



 . (12.18)

The ratio of the dianeutral to isoneutral diffusivities is generally quite small in the
ocean interior

ε = AD/AI ≈ 10−8. (12.19)

12.1.4 Small angle approximation

The bulk of the mesoscale eddying ocean maintains neutral directions no more than
5% from the horizontal. Hence, it is quite accurate to take the small angle approxi-
mation. This section details this approximation.

12.1.4.1 Small angle diffusion tensor

Gent and McWilliams (1990) first wrote down the following small angle diffusion
tensor

Kmn
small = AI







1 0 −ρ,x
ρ,z

0 1 −ρ,y
ρ,z

−ρ,x
ρ,z
−ρ,y
ρ,z

ε+ S2





 = AI





1 0 Sx
0 1 Sy
Sx Sy ε+ S2



 . (12.20)

Note we retained the S2 term in the (3, 3) element since, although small, it is po-
tentially larger than the small ratio ε ≈ 10−8. Cox (1987) originally retained the
(1, 2) = (2, 1) elements equal to −SxSy. In the small angle approximation, how-
ever, these terms are negligible. Additionally, and most crucially, by retaining these
terms, the incorrect small angle tensor of Cox (1987) diffused buoyancy whereas the
full tensor does not (see Section 12.1.6). Hence, it is important to use the physically
consistent form of the small angle tensor which drops the (1, 2) and (2, 1) elements.
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12.1.4.2 Small angle diffusive fluxes

The horizontal and vertical components to the small angle diffusive flux are given
by

F(h) = −AI ∇ρC (12.21)

F(z) = −AI S · ∇ρC− AD C,z (12.22)

where
∇ρ = ∇z + S ∂z (12.23)

is the neutral oriented gradient operator as derived in Section 5.5.3. The neutral
portion of this flux satisfies F(z) = S · F(h). As discussed in Section 11.6.2, this
relation is satisfied by an arbitrary vector oriented along the neutral direction in a
region of stable stratification.

The dianeutral diffusive term reduces under the small slope approximation to
just vertical diffusive flux. As seen in the following, this approximation is quite
accurate since it neglects a term proportional to AD S2, which is very small.

12.1.4.3 Small angle tensor in the neutral frame

Given the small angle representation of the diffusion tensor in the z-level frame,
what is the representation of this tensor in the neutral frame? This tensor cannot
be the diagonal form given in equation (12.12) since that form transformed into the
full angle representation of equation (12.17). Using the full transformation back to
the neutral frame, Kmn

small = Λm
mKmn

smallΛ
n

n, or in matrix form

Kmn
small = AI









Sy
S − Sx

S 0
Sx

S
√

1+S2

Sy

S
√

1+S2
S√

1+S2

− Sx√
1+S2 − Sy√

1+S2
1√

1+S2









× (12.24)





1 0 (1−ε)Sx
0 1 (1−ε)Sy

(1−ε)Sx (1−ε)Sy ε+ S2













Sy
S

Sx
S
√

1+S2 − Sx√
1+S2

− Sx
S

Sy

S
√

1+S2 − Sy√
1+S2

0 S√
1+S2

1√
1+S2









(12.25)

yields the orthonormal isopycnal frame representation of the small angle approxi-
mated tensor∗

Kmn
small =





AI 0 0
0 AI(1 + S2) 0
0 0 AD



+
ADS2

1 + S2





0 0 0
0 −1 S
0 S 1



 . (12.26)

The small angle approximation thus adds a small amount of along neutral mixing
(the AI S2 addition to the (2, 2) element) relative to the full neutral diffusion tensor.
Additionally, there is a contribution proportional to ADS2. This term means that by

∗Note the rotation need not transform the x̂ ↔ ŷ directional symmetry present in the (x, y, z)
form of the small angle mixing tensor into a ê1 ↔ ê2 symmetry in the (ê1 , ê2 , ê3) form. The (x, y)
coordinate symmetry, however, is preserved.
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approximating the dianeutral diffusive flux as a vertical diffusive flux, we are led to
a difference on the order of AD S2, which is again trivially small. In conclusion, the
small slope approximation leads to a neutral and dianeutral diffusive fluxes that
differ from the full slope by terms on the order (AI , AD) S2, respectively, and so it
is a very accurate approximation for purposes of ocean climate modeling. Stated al-
ternatively, the small slope tensor is consistent with the small angle approximation
to within terms on the order of S2.

12.1.5 Errors with horizontal diffusion in the ocean interior

Given the rotation formalism developed here, it is possible to consider errors made
when using horizontal diffusion instead of neutral diffusion. For this purpose, let
I represent the horizontal-vertical diffusion tensor, which is diagonal in the z-level
frame. Transforming this tensor to the neutral frame

Imn =









Sy
S − Sx

S 0
Sx

S
√

1+S2

Sy

S
√

1+S2
S√

1+S2

− Sx√
1+S2 − Sy√

1+S2
1√

1+S2













AH 0 0
0 AH 0
0 0 AV



×









Sy
S

Sx
S
√

1+S2 − Sx√
1+S2

− Sx
S

Sy

S
√

1+S2 − Sy√
1+S2

0 S√
1+S2

1√
1+S2









, (12.27)

yields

Imn =
AH

1 + S2





1 + S2 0 0
0 1 + ε̃S2 −S(1− ε̃)
0 −S(1− ε̃) ε̃+ S2



 , (12.28)

where ε̃ = AV/AH is the ratio of the vertical to horizontal diffusion coefficient.
Therefore, diffusion with I in the z-level frame introduces first order in slope errors
in the off diagonal terms, whereas the diagonal terms contain second order in slope
errors. The error in the (3, 3) component, however, is the most relevant as it repre-
sents an added and potentially huge source of dianeutral diffusion. For example,
with the usual diffusivity ratio ε̃ ≈ 10−8, modest slopes larger than

√
10−8 = 10−4

are sufficient to add spurious dianeutral mixing through the S2 term which is on
the same order as ε̃. It is for this reason that horizontal diffusion is incompatible
with the hypothesis that diffusive mixing occurs predominantly along the neutral
directions.

12.1.6 Balance between active tracer neutral diffusive fluxes

Neutral diffusion does not affect the buoyancy field. That is, it does not diffuse
locally referenced potential density. However, neutral diffusion does separately
diffuse the active tracers potential temperature and salinity along the neutral direc-
tions. As shown by equation (11.36), the neutral directions are themselves functions
of the active tracers. Therefore, preserving the neutral directions while diffusing the
active tracers requires a balance between the active tracer neutral diffusive fluxes.
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12.1.6.1 Balance with the full diffusion tensor

The balance of active tracer neutral diffusion fluxes is a trivial consequence of the
definition (11.44) of the neutral diffusion tensor, and the relation (11.36) for the
local normal to the neutral direction. That is, with the neutral diffusive fluxes for
potential temperature and salinity given by (recall equation (11.45))

F(θ) = −AI(∇θ− ρ̂(ρ̂ · ∇θ)) (12.29)
F(s) = −AI(∇s− ρ̂(ρ̂ · ∇s)), (12.30)

we have

ρ(−α F(θ) +β F(s)) =
(

∂ρ
∂θ

)

s,p
F(θ) +

(

∂ρ
∂s

)

θ,p
F(s)

= −AI ρ,θ (∇θ− ρ̂(ρ̂ · ∇θ))− AI ρ,s (∇s− ρ̂(ρ̂ · ∇s))
= −AI (ρ,θ∇θ+ ρ,s∇s) + AI ρ̂ (ρ̂ · (ρ,θ∇θ+ ρ,s∇s))
= 0,

(12.31)

where substitution of equation (11.36) for ρ̂ led to the cancelation. Maintaining the
balance

α F(θ) = β F(s) (12.32)

on the lattice is crucial for realizing a stable discrete neutral diffusion operator
(Griffies et al. (1998)).

12.1.6.2 Balance with the small angle neutral diffusion tensor

Maintenance of the balance (12.32) is also afforded by small slope neutral diffu-
sive fluxes. In this case, it is sufficient to show that the horizontal fluxes maintain
a balance, since the vertical flux component is related to the horizontal through
equation (11.43): F(z) = S · F(h). Equation (12.21) exhibits the horizontal neutral
diffusive fluxes in the small slope limit

F(h)(θ) = −AI ∇ρθ (12.33)

F(h)(s) = −AI ∇ρs, (12.34)

where ∇ρ = ∇z + S ∂z is the neutrally oriented gradient operator. Hence,

ρ,θ F(h)(θ) + ρ,s F(h)(s) = −AI (ρ,θ∇ρθ+ ρ,s∇ρs) = 0, (12.35)

where we substituted ∇ρ = ∇z + S∂z for the derivative operator and relation
(11.42) for the slope vector S. Failure to maintain this balance proved to be the key
reason that the Cox (1987) numerical realization of neutral diffusion was unstable
(Griffies et al. (1998)).
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12.1.7 Cabbeling, thermobaricity, and halobaricity

When diffusing active tracers with a nonlinear equation of state, locally referenced
potential density is affected by three non-flux forms of irreversible mixing known
as cabbeling, thermobaricity, and halobaricity (McDougall (1987b)). In this subsec-
tion, we present the mathematical form of such mixing as associated with neutral
diffusion. An alternative formulation of the following, in much more detail, can be
found in McDougall (1991).

Under the effects of neutral diffusion, the time tendency for locally referenced
potential density is given by

ρ,t = ρ(−αθ,t +β s,t)
= ρ[α∇ · FI(θ)−β∇ · FI(s)]
= −∇(ρα) · FI(θ) +∇(ρβ) · FI(s), (12.36)

where the active tracer balanceαFI(θ) = βFI(s) was used to reach the last equality.
The forcing terms, which vanish for a linear equation of state and which cannot be
written as the divergence of a flux, represent cabbeling, thermobaricity, and halo-
baricity. These processes provide irreversible, non-diffusive forms of mixing (Mc-
Dougall (1987b)). Note for the special case of a single active tracer, neutral direc-
tions are aligned with iso-tracer surfaces, thus providing for a zero neutral diffusive
flux of the single active tracer and therefore an absence of cabbeling, thermobaricity,
and halobaricity.

It is useful to isolate the mathematical forms of the irreversible mixing, which
can be done via the identities

∇s · FI(θ) = ∇θ · FI(s), (12.37)
∇(−ρα) = ρ,θθ∇θ+ ρ,θs∇s + ρ,θ p∇p, (12.38)

and likewise for ∇(ρβ). Note the presence of pressure gradients. These terms rep-
resent the effects of probing different pressure surfaces, and hence different poten-
tial density surfaces; i.e., these are the thermobaric terms. Probing different pres-
sure surfaces is necessary when computing the spatial gradients of the thermal and
saline expansion coefficients∗. With these substitutions, the evolution of locally ref-
erenced potential density takes the form

ρ,t = ρ,θθ∇θ · FI(θ) + ρ,ss∇s · FI(s) + 2ρ,θs∇s · FI(θ) +∇p · (ρ,θ pFI(θ) + ρ,s pFI(s))

= ∇θ · FI(θ)[ρ,θθ − 2ρ,θs(ρ,θ/ρ,s) + ρ,ss(ρ,θ/ρ,s)2] +∇p · (ρ,θ pFI(θ) + ρ,s pFI(s)).
(12.39)

The first part of this expression can be written as the product of two quadradic
forms by introducing a vector

W = (1,α/β) (12.40)

and a metric
ρ,ab = ∂a∂bρ, (12.41)

∗Trevor McDougall kindly emphasized this point.
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where the labels a, b represent the two tracer fields θ, s. This definition renders

ρ,t = ∇θ · FI(θ) ∗W ·W + (ρ,θ pFI(θ) + ρ,s pFI(s)) · ∇p (12.42)

where the inner product

W ·W = ρ,abWa Wb

= ρ,θθ − 2ρ,sθ (ρ,θ/ρ,s) + ρ,ss (ρ,θ/ρ,s)2

= −α,θ − 2(α/β)α,s + (α/β)2β,s (12.43)

represents the squared length of the vector W on the curved potential density sur-
face characterized locally by the metric ρ,ab.

12.1.7.1 Cabbeling

The term
cabbeling = ∇θ · FI(θ)×W ·W (12.44)

represents the effects from cabbeling. As written here, cabbeling is seen to be the
product of a piece associated with the downgradient neutral diffusive flux of po-
tential temperature (∇θ · FI(θ) ≤ 0), and a piece associated with the local geometric
properties intrinsic to the potential density surface (W ·W). In the ocean, the total or
Gaussian curvature det(ρ,ab)(1 + ρ2

,θ + ρ2
,s)−1 is negative. This negative curvature

renders W ·W ≤ 0, which, when combined with downgradient neutral diffusion
of potential temperature, always results in a non-negative tendency for ρ and a
consequent downward dianeutral advection (McDougall (1987b)).

If the term ∇θ · FI(θ) is sign-indefinite, then the contribution of cabbeling to
the locally referenced potential density is also sign-indefinite. Sign-indefiniteness
is not desirable for a sub-grid scale process associated with mixing, since mixing
in the ocean generally produces a sign-definite cabbeling term. Hence, we should
avoid the use of continuum mixing operators that are not down-gradient. As dis-
cussed in Section 12.5, biharmonic tracer operators are mixing operators that have
sign-indefinite tracer fluxes. This is a key reason for eschewing these operators in
realistic ocean climate simulations. The other reason is that the biharmonic tracer
operators do not lend any advantage to the simulation beyond the Laplacian tracer
operators. The crucial advantage to more scale selective operators comes from the
use of biharmonic momentum friction, not biharmonic tracer diffusion.

12.1.7.2 Thermobaricity and halobaricity

The terms proportional to the pressure gradient

thermobaricity + halobaricity = [ρ,θ pFI(θ) + ρ,s pFI(s)] · ∇p (12.45)

represent the effects from thermobaricity and halobaricity. These terms depend on
the pressure dependence of the equation of state for seawater. Note that the thermo-
baric term ρ,θ pFI(θ) · ∇p dominates the halobaric term ρ,s pFI(s) · ∇p (McDougall
(1987b)). In contrast to cabbeling, thermobaricity and halobaricity do not provide a
sign definite source for locally referenced potential density.
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12.2 Gent-McWilliams stirring

The SGS stirring suggested by Gent and McWilliams (1990) is based on assuming (i)
SGS mesoscale eddies locally provide an adiabatic sink of available potential energy
(APE) (ii) SGS mesoscale eddies act on all tracers in the same fashion. Alternative
proposals continue to be the subject of intense research (see Section 11 of Griffies
et al. (2000a) for a brief review with numerous references). However, this section,
and the current implementation in MOM4, maintain the basic GM assumptions.

As a stirring parameterization, the GM scheme can be represented either via an
advective or skew-diffusive form. Griffies (1998) showed how the skew approach
is far more convenient numerically than the advective approach. This section aims
to highlight some basic properties of the GM scheme.

12.2.1 The GM potential density skew flux

The simplest GM skew flux acts on potential density in an adiabatic Boussinesq
ocean. Hence, it is useful to consider the equation for the large-scale potential den-
sity ρ in a way that respects the GM assumptions. For this purpose, consider the
equation for the potential density field

ρ,t = −∇ · (vρ)−∇ · F, (12.46)

where the first term on the right hand side represents advective stirring via the
divergence-free velocity explicitly represented in the numerical model, and the sec-
ond term represents the parameterized effects of the SGS baroclinic eddies. The
form of the flux F is now to be determined according to the GM assumptions.

Our arguments here are aimed at reducing the derivation of the GM90 skew-
flux to a concise geometric and local energetic argument. For this purpose, we note
that a flux aligned parallel to the potential density surfaces will cause no mixing
of potential density classes. Hence, such a flux will result in an adiabatic SGS op-
erator.∗ Geometry discussed in Section 11.6.2 leads to the general form of this flux

F = F(h) + ẑ S · F(h), (12.47)

where

S = −
(

∇zρ

ρ,z

)

(12.48)

is the slope of the potential density surface. Hence, aligning the flux along the
potential density surface reduces the three unknown flux components down to two.
Additionally, the relation

F · ∇ρ = 0 (12.49)

defines F as a potential density skew-flux. We re-emphasize here a geometric point
brought out in Section 11.5, where we saw that every skew flux has a corresponding
advective flux F(a) = v∗ ρ, whose form differs from the skew flux by a total curl.

∗Our choice to orient the flux parallel to the potential density surfaces is indeed a sufficient condi-
tion for producing an adiabatic transport operator, though not necessary. There are other physically
relevant transport fluxes that have a non-zero cross-isopycnal component, such as the advective flux
vρ.



262 CHAPTER 12. NEUTRAL TRANSPORT: PART II

Notably, the component of the non-divergent advection velocity v∗ aligned perpen-
dicular to potential density isolines creates local changes in potential density; i.e.,
ρ,t = −v∗ · ∇ρ. The advective flux, which leads to an adiabatic stirring operator,
therefore provides an important counter-example to our assumption above that the
adiabatic SGS flux needs to be aligned parallel to density isolines. We return to the
advective form of GM later in this section.

We now consider the constraints on the flux imposed by assuming the operator
locally and adiabatically reduces available potential energy (APE) of the flow. A
state of zero APE is one with no baroclinicity: isopycnals are flat. The potential
energy of the adiabatic Boussinesq system is given by

P =
∫

V
dV ρ z. (12.50)

The tendency associated with the unknown GM flux field is given by

P,t = g
∫

V
dV zρ,t

= −g
∫

V
dV (z∇ · F)

= −g
∫ 0

−H
dz (z ∂zF(z))

= g
∫ 0

−H
dz F(z), (12.51)

where F(z) is the vertical component to the GM-flux. Note that we assumed a flat
bottom domain H(xh) = H and neglected effects of the free ocean surface z =
η(xh, t). These assumptions are based on our desire to focus on baroclinic physics
in the ocean interior isolated from bottom and surface effects. In order to provide a
local APE sink, we require

F(z) ≤ 0, (12.52)

where zero occurs when the isopycnals are flat. It is sufficient to construct the ver-
tical flux component using only the potential density field itself. For a stably strat-
ified fluid in which ρ,z < 0, the following form provides a local APE sink required
by the GM assumptions

F(z) = κ S2 ρ,z (12.53)

where κ is a positive diffusivity that sets the strength of the flux, and S2 is the
squared isopycnal slope. Consequently, the horizontal flux component reduces to
a downgradient diffusive flux

F(h) = −κ∇zρ. (12.54)

In summary, the GM skew-flux for potential density takes the form

F = −κ (∇zρ− ẑ S2 ρ,z). (12.55)

Notably, when breaking the three-dimensional GM skew-flux into its horizontal
and vertical components, the horizontal flux is downgradient whereas the vertical
flux is upgradient. There is no instability associated with the upgradient vertical
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flux, since it is the convergence of the full three-dimensional flux that creates the
evolution of the potential density field.

The advective GM flux v∗ρwas presented in Gent et al. (1995), where the divergence-
free GM eddy-induced velocity takes the form

v∗ = ∇∧Υgm = −∂z (κ S) + ẑ∇z · (κ S), (12.56)

where the vector streamfunction is

Υgm = ẑ ∧κ S. (12.57)

It turns out that the advective form of the GM parameterization is significantly
more cumbersome to numerically implement than the skew-flux form. The follow-
ing section provides some motivation for this point, with Griffies (1998) presenting
more details with numerical examples.

12.2.2 GM skewsion and small angle neutral diffusion

GM assumed that the same SGS eddy-induced velocity v∗ acts to transport all trac-
ers, in addition to the model’s resolved scale velocity field v. In this case, Griffies
(1998) showed that for an arbitrary tracer, the GM skew flux takes the form

F = κ (S C,z − ẑ S · ∇zC) . (12.58)

Since F · ∇C = 0, the GM skew flux is oriented parallel to surfaces of constant
tracer.

In addition to GM stirring, we need to consider neutral diffusion where the
small angle slope approximation is relevant for parameterizing mesoscale ocean
dynamics. Hence, the combination of GM stirring and neutral diffusive mixing
leads to the tracer flux

F = −AI ∇zC + (κ − AI) S C,z − ẑ ((AI +κ) S · ∇zC + AI S2 C,z). (12.59)

This flux can be written in terms of the following neutral physics mixing tensor




F(x)

F(y)

F(z)



 =





AI 0 (AI −κ) Sx
0 AI (AI −κ) Sy

(AI +κ) Sx (AI +κ) Sy AI S2









C,x
C,y
C,z



 . (12.60)

12.2.2.1 Flux arising when AI = κ

Making the common assumption that the diffusivities associated with SGS stirring
and diffusion are equal leads to the very simple result

F = −κ∇zC− ẑκ (2 S · ∇zC + S2 C,z), (12.61)

in which the 2× 2 horizontal mixing tensor is diagonal. Hence, the horizontal tracer
flux is the same as that which arises from downgradient horizontal diffusion. The
simplicity of the horizontal flux component reduces the total computational cost
of these two SGS schemes to less than the cost of either one alone. This is the key
practical result of the Griffies (1998) paper, and it is the central reason for preferring
the skew-diffusive form of GM over the advective form. Additional benefits arise
since the discretized skew flux is less prone to discretization errors relative to the
advective flux.
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12.2.2.2 Effective horizontal and vertical diffusivities

An additional point worth raising concerns the diagnoses of an effective horizon-
tal/vertical diffusivity from a z-model run with neutral diffusion plus GM skew-
sion. Those used to projecting their tracer fluxes along lines of constant geopo-
tential may find the computation of such effective diffusivities of interest. In the
special case of AI = κ, this diagnoses becomes quite straightforward, as we have

F = −κ∇zC− K(z)
e f f C,z. (12.62)

That is, the effective horizontal diffusivity is simply κ, as just mentioned. Although
the effective vertical diffusivity K(z)

e f f is more complicated, it can be written in the
reasonably elegant form

K(z)
e f f = κ S · (S− 2 SC) (12.63)

where SC defines the slope of tracer isolines

SC = −
(

∇zC
C,z

)

. (12.64)

As defined, K(z)
e f f can be either positive or negative, depending on the relative ori-

entation of the neutral directions and tracer isolines. In particular, when the tracer
is aligned with the neutral direction,

K(z)
e f f = −κ S2 (12.65)

which is the same negative effective diffusivity seen when considering GM skew-
sion acting on neutral density (i.e., equation (12.53)). It is notable that a formulation
of GM according to the advective flux does not afford such a straightforward inter-
pretation/summary of neutral diffusion plus GM skewsion as that provided here.
This is another key point raised by Griffies (1998).

12.3 A summary of the neutral physics fluxes

We provide here a brief summary of the tracer fluxes introduced in the previous
sections. For all cases, the mixing operator R(C), with units tracer/time, is given
by the convergence of the flux

R(C) = −∇ · F(C). (12.66)

• The small angle neutral Laplacian diffusive flux for an arbitrary tracer is given
by

F = −A (∇ρ + ẑ S · ∇ρ) C, (12.67)

where

S = ∇ρz

= −
(

∇zρ

ρ,z

)

= −
(

−α∇zθ+β∇zs
−αθ,z +β s,z

)

(12.68)
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is the neutral slope and
∇ρ = ∇z + S ∂z (12.69)

is the neutral gradient operator (see Section 5.5.3 for a derivation). Notably,
the small angle neutral Laplacian diffusive flux for locally referenced poten-
tial density vanishes

F(ρ) = 0. (12.70)

• The Laplacian GM skew-flux for an arbitrary tracer is given by

F = −κ (−S ∂z + ẑ S · ∇z) C, (12.71)

and the skew-flux for locally referenced potential density ρ is given by

F = −κ (∇z + ẑ S · ∇z)ρ = −κ (∇z − ẑ S2 ∂z)ρ. (12.72)

12.4 Flow dependent diffusivities

Most global ocean climate models run in the 1990’s used neutral diffusive and GM
skew-diffusive mixing coefficients of equal value independent of the local flow
properties: A = κ. A notable exception is when the diffusivities are tapered in
regions of steep neutral direction slopes and the zero eddy flux condition is ap-
plied at the ocean surface (Gent et al. (1995), Treguier et al. (1997), Killworth (1997),
Griffies et al. (1998), and McDougall and McIntosh (2001). Recent studies, however,
aim to provide a diffusivity within the ocean interior in terms of length and time
scales set by local properties of the model’s resolved fields.

Currently, there are no strong arguments suggesting that it is best to use dif-
ferent diffusivities for the GM and neutral diffusion scheme, even when those dif-
fusivities are functions of the flow. Indeed, Dukowicz and Smith (1997) provide
arguments in favor of the same diffusivities. In practice, this choice has been made
based on simplicity, although equal diffusivities is not a universal choice (e.g., Gor-
don et al. (2000)).

12.4.1 Horizontal and vertical dependent diffusivities

The papers by Held and Larichev (1996) and Visbeck et al. (1997) each propose
methods for computing a diffusivity in terms of a length and time scale. Proper-
ties of the resolved flow that are local in the horizontal yet nonlocal in the vertical
determine these length and time scales. Killworth (1997), following on a sugges-
tion from Treguier et al. (1997), presents a theory based on linear baroclinic insta-
bility in which the diffusivity obtains both a horizontal and vertical dependence.
Notably, closures based on diffusing potential vorticity downgradient must incor-
porate a nontrivial vertical dependence to their diffusivities in order to maintain
basic kinematic balances (e.g.,Marshall and Shutts (1981), Treguier et al. (1997), Kill-
worth (1997)). Results from the high resolution channel model study by Treguier
(1999) are consistent with Killworth’s ideas. Smith and Vallis (2002) also provide
a vertical-horizontal dependent diffusivity for potential vorticity, with their theory
based on scalings from fully developed quasi-geostrophic turbulence.
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Even though there are an increasing number of idealized numerical studies,
there remains a dearth of large-scale coarse resolution studies to investigate the
utility of flow dependent diffusivities. In particular, there are no published tests of
coarse global models using potential vorticity based closures. Instead, only closures
based on the Gent and McWilliams (1990) ideas have been tested with non-constant
diffusivities. A notable account of non-constant diffusivities run in a global model
is that of Wright (1997), in which he compared a suite of constant coefficient GM90
experiments to a single run with the Visbeck et al. (1997) diffusivity. In these tests
the flow dependence was given only to the GM diffusivity, with the neutral diffu-
sion coefficient held constant. Tests were run with the Hadley Centre’s 1.25◦ ocean
model, and the results were generally favorable towards the Visbeck et al. (1997)
diffusivity, hence prompting the Hadley Centre to employ this scheme in their cli-
mate simulations (Gordon et al. (2000)). Unpublished studies in coarser simulations
(e.g., coarser than 2◦) suggest that non-constant diffusivities may not be so advan-
tageous at this and coarser resolutions (A. Adcroft, personal communication 2000;
M. Roberts, personal communication 1998; report of the WOCE/CLIVAR Work-
shop on Ocean Modelling for Climate Studies, WOCE Report No. 165/99). The
idea is that there needs to be a nontrivial structure to the resolved model flow for
inhomogeneities in the diagnosed diffusivity to be of utility.

Additional research is ongoing to test the utility of vertically dependent diffu-
sivities for large-scale modeling. However, we know of no published study ex-
hibiting a significant improvement associated with the added complexity of a ver-
tically dependent diffusivity. Notably, allowing for vertical dependence necessi-
tates some added structure to the neutral tracer operators compared to the depth-
independent form. At present most publicly supported ocean climate models only
provide the framework for employing flow dependent diffusivities that are inde-
pendent of depth. Hence, in the remainder of this section we limit our discussion
to depth independent diffusivities.

12.4.2 Length and time scales for Held and Larichev

Both Held and Larichev (1996) and Visbeck et al. (1997) develop diagnostic expres-
sions for a time scale T and length scale L according to properties of the model’s
resolved flow field. Thereafter, a diffusivity is computed via

κ = L2/T. (12.73)

The squared inverse time scale (squared growth rate) suggested by Held and
Larichev (1996) is given by

T−2 =
f 2

D

∫ −Dt

−Db

Ri−1 dz. (12.74)

In this expression, f is the Coriolis parameter and Ri is the Richardson number
determined by large-scale flow features. This growth rate corresponds to that of a
growing Eady wave and the time scale T is on the order of tens to hundreds of days.
The integration depth range, D = Db − Dt was suggested by Treguier et al. (1997)
to be Dt = 100m and Db = 2000m. This depth range is also taken in the Hadley
Centre ocean model in which they implement the Visbeck et al. (1997) scheme. This
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range is intended to discount the unstratified mixed layer where the growth rate
becomes unbounded. However, it is a bit arbitrary. Sensitivity of the results to this
range has not been documented.

The length scale suggested by Held and Larichev (1996) is related to the effective
Rhines’ scale

L−1 = βe f f T. (12.75)

The effective beta-parameter βe f f incorporates both planetary vorticity gradients
and gradients in the large-scale topography

βe f f = H|∇z( f /H)|. (12.76)

The resulting diffusivity is given by

κ = L2 T−1 = (β2
e f f T3)−1. (12.77)

12.4.3 Length and time scales for Visbeck et al. (1997)

The time scale suggested by Visbeck et al. (1997) is given by

T−1 =
f
D

∫ −Dt

−Db

Ri−1/2 dz. (12.78)

The square of this expression is not identical to the squared inverse time scale
(12.74) from the Held and Larichev (1996) scheme. However, in both approaches
the time scale is determined by scaling arguments. Hence, differences are not fun-
damentally significant and so can be absorbed into an overall tuning parameter.

The length scale L in the Visbeck et al. (1997) scheme is determined by the re-
gional structure of the baroclinicity–the “width of the baroclinic zone.” Details of
how to compute this length scale are somewhat ambiguous for a three-dimensional
flow. No clear algorithm was described in the Visbeck et al. (1997) paper as they
considered only two-dimensional flow. The Hadley Centre model of Gordon et al.
(2000) employs a search algorithm described in Pacanowski and Griffies (1999)
(Malcolm Roberts, personal communication 1997).

12.4.4 Length scale given by the first baroclinic Rossby radius

Instead of the Rhines’ scale or width of the baroclinic zone, we prefer a length scale
set according to the first baroclinic Rossby radius. The relevance of this length scale
for eddy parameterization was suggested by theoretical studies of Stone (1972),
satellite based data analysis by Stammer (1997b), and eddying ocean model studies
by Bryan et al. (1999).

Outside an equatorial band of roughly ±5◦, the mth-mode Rossby radius takes
the form

λm =
cm

| f | , (12.79)

where cm is the phase speed of mth-mode (m ≥ 1) gravity waves in a non-rotating,
continuously stratified flat bottom ocean (Gill (1982)). As shown in a thorough
study by Chelton et al. (1998), the Rossby radius is largely dominated by the inverse
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Coriolis dependence (see their Figure 6). Within an equatorial band of ±5◦, the
Rossby radius is given by

λm =
(

cm

2β

)1/2

, (12.80)

whereβ is the planetary beta-parameter. A useful approximate gravity wave phase
speed can be obtained by the WKB form described by Chelton et al. (1998)

cm ≈
1

m π

∫ 0

−H
N dz, (12.81)

where N is the buoyancy frequency. Notably, the vertical integral is over the full
depth range. Unlike the Eady growth rate calculation, the vertical integration can
be easily extended to unstratified regions since the integrand simply vanishes there.

12.4.5 The thermal wind Richardson number

Fundamental to the mesoscale eddy closure theories is the assumption that the
mesoscale eddy field is quasi-geostrophic. Consequently, the Richardson number,
Ri, determining the time scale is the large-scale Richardson number based on ver-
tical shears under thermal-wind balance with the buoyancy field. This assumption
renders

Ri =
N2

U2
,z + V2

,z

=
−gρ,z/ρo

(g/ fρo)2(ρ2
,x + ρ2

,y)

= −
(

f 2 ρo

gρ,z

)

S−2

= ( f /NS)2

(12.82)

where
S2 = (ρ2

,x + ρ2
,y)/ρ2

,z (12.83)

is the squared neutral direction slope vector and

N2 = −gρ,z/ρo = −(g/ρo) (ρ,θ θ,z + ρ,s s,z) (12.84)

is the squared buoyancy frequency based on the vertical gradient of locally refer-
enced potential density.

12.4.6 Rotational independence of the time scale

The thermal wind Richardson number (12.82) brings the squared inverse time scale
written according to the Held and Larichev form (12.74) to

T−2 =
1
D

∫ −Dt

−Db

N2 S2 dz = (N S)2, (12.85)
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where an over-bar represents a vertically averaged quantity with the average taken
over the chosen depth range. Likewise, the Visbeck et al. (1997) form of the inverse
time scale (12.78) is

T−1 =
1
D

∫ −Dt

−Db

N S dz = N S. (12.86)

As mentioned in Section 12.4.3, any difference between (N S)2 and (N S)2 is not
fundamentally significant and so can be ascribed to an overall dimensionless scal-
ing factor.

Note how the explicit dependence on the Coriolis parameter f has canceled
from the time scale. The source of this cancellation is the use of thermal wind bal-
ance for computing the Richardson number. Consequently, the time scale is an ex-
plicit function only of the vertically averaged horizontal and vertical stratification.
Relatedly, the explicit cancelation of the Coriolis parameter allows for the time scale
calculation to be naively applied globally, including at the equator where geostro-
phy is irrelevant.

The inverse time scale, or the growth rate, vanishes when the vertically in-
tegrated horizontal stratification vanishes; i.e., when there is zero baroclinicity.
Hence, the diffusivity vanishes when the neutral directions are flat, as one would
expect for a configuration absent available potential energy. Conversely, the growth
rate becomes large when the neutral direction slope becomes large, which is ex-
pected for regions of large available potential energy.

For testing the validity of the code, it is useful to estimate a maximum expected
Eady growth rate. For this purpose, assume the buoyancy frequency to be on the
order of f and the slopes to be a constant of 1/100 throughout the column. This case
leads to a maximum growth rate on the order of T−1 = f /100. Note that in unstrat-
ified regions, the growth rate is actually unbounded. This behavior is undesirable
numerically and signals a limitation of the quasi-geostrophic theory to extend into
highly unstratified regions. Regularization methods proposed in Section 12.4.7 and
12.4.8 aim to numerically eliminate these singularities. Regardless the details, the
result of these regularization methods should be a growth rate no larger than the
maximum estimate given here.

12.4.7 One means to provide a regularized diffusivity

In regions of zero vertical stratification, the Eady growth rate given in Section 12.4.6
becomes unbounded. It is therefore necessary to provide a regularization method
for the numerical model. A method suggested by Treguier et al. (1997), and used
in the Hadley Centre and Pacanowski and Griffies (1999) implementations of these
schemes, is to restrict the vertical integration to regions where the vertical stratifica-
tion is nontrivial. This approach, as mentioned in Section 12.4.2, leads to the some-
what ad hoc specification of two depths Db and Dt. This section presents another
method arguably just as valid. It aims to maintain consistency with the Rossby
radius calculation of Chelton et al. (1998) discussed in Section 12.4.4, where the
vertical integration is over the full ocean depth.
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12.4.7.1 Regularization

To motivate a regularization method handling unstratified regions, write the first
mode gravity wave phase speed in the form

π c1 =
∫ 0

−H
N dz = H N. (12.87)

Hence, the first baroclinic Rossby radii for the equatorial and off-equatorial regions
take the form

L<|5◦| =
(

H N
2 π β

)1/2

(12.88)

L>|5◦| =
H N
π | f | , (12.89)

and the corresponding diffusivities κ = L2 T−1 are

κ<|5◦| =
(

H
2 π β

)

(N) N S (12.90)

κ>|5◦| =
(

H
π f

)2

(N)2 N S, (12.91)

where the inverse time scale (12.86) of Visbeck et al. (1997) was used. The numerical
problem is that N S becomes infinite if any piece of a vertical column is unstratified.
One means to resolve this problem is to write

N S =
(

N2 S
N

)

= γ

(

N2 S
N

)

. (12.92)

If we assume the dimensionless parameter γ is a constant, we are led to the regu-
larized diffusivities

κ<|5◦| = γ

(

H
2 π β

)

N2 S (12.93)

κ>|5◦| = γ

(

H
π f

)2

N N2 S. (12.94)

Notably, the diffusivity within the equatorial band is only a function of the hor-
izontal stratification via N2 S, whereas the diffusivity outside the band is a function
of both horizontal and vertical stratification via N N2 S. In practice, the dimension-
less parameter γ will be used as a tuning parameter. Additionally, it is necessary to
set a lower and upper limit on the diffusivity for purposes of maintaining numeri-
cal stability.

Regularization methods, such as this one and the preferred method described
in Section 12.4.8, remedy a numerical problem associated with an incomplete phys-
ical theory. In the present case, the regularization method numerically remedies
a limitation of quasi-geostrophic theory to extend into vertically unstratified re-
gions. One goal of the numericist designing regularization methods is to maintain
numerical stability without egregiously compromising the physical integrity of the
algorithm. In general, we counsel strong skepticism be given any regularization
scheme since they are often based on numerical considerations moreso than physi-
cal considerations.
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12.4.7.2 A value for the tuning parameter

A useful means of gauging the size of the tuning parameter is to consider a linear
equation of state ρ = ρo (1−αθ) and a depth independent neutral direction slope.
In this case, the equatorial-band diffusivity becomes

κ<|5◦| = γ

(

H
2 π β

)

S N2

= γ

(

S H
2 π β

)

N2

= γ

(

α g S H
2 π β

)

(θ(z = 0)−θ(z = −H)). (12.95)

With β = 2.28× 10−11(m s)−1 at the equator, g = 9.8 m s−2, α = 2× 10−4(◦K)−1,
and θ(z = 0)−θ(z = −H) = 20◦K, we have

κ<|5◦| ≈ Sγ
(

3× 108m2 s−1
)

. (12.96)

If the depth averaged slope is S = 10−3, then

κ<|5◦| ≈ γ
(

3× 105m2 s−1
)

. (12.97)

Based on experience with ocean models run with constant neutral physics diffu-
sivities, where values are on the order 102 − 103m2 s−1, one is motivated to set the
tuning parameter to

γ = 0.01, (12.98)

which is consistent with the dimensionless scaling parameter suggested by Visbeck
et al. (1997). This choice then brings the diffusivity to

κ<|5◦| ≈ 3× 103m2 s−1. (12.99)

12.4.8 A recommended approach

A cumbersome aspect of the flow dependent diffusivities presented thus far is that
they do not explicitly depend on the grid scale. Hence, there is no tendency for their
values to decrease as the grid is refined. Indeed, for refined grids, the Eady growth
rate increases since the model allows more vigorous mean flows with stronger gra-
dients and slopes. One thus has the undesirable situation of larger flow dependent
diffusivities for refined grids.

A diffusivity decreasing upon grid refinement is useful since (1) refined grids
allow for more active mean flows that one does not wish to overly diffuse, (2) relat-
edly, with enough resolution, the model transitions to a regime where the parame-
terized quasi-geostrophic eddying flow becomes explicitly represented, thus moti-
vating the reduction of the SGS operator’s contribution to the time tendency. It is
notable that frictional dissipation via the Smagorinsky viscosity scheme (Smagorin-
sky (1993) and Griffies and Hallberg (2000)) provides an example where the SGS
operator naturally becomes less important as resolution is refined. This is the goal
of the diffusivity proposed in this section.
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12.4.8.1 Length scale

For purposes of quasi-geostrophic eddy parameterizations, coarseness of a model
grid is based on how the grid size compares to the first baroclinic Rossby radius
of deformation. If the grid is coarse, then an appropriate length scale for com-
puting the diffusivity is given by the Rossby radius as discussed in Section 12.4.4.
For refined models where the Rossby radius is larger than the grid, which is now
quite common at least for models with refined tropical resolution, then usage of
the Rossby radius to determine the diffusivity will produce an overly large value.
Hence, it is proposed that the length scale be given by the following smooth func-
tion of the Rossby radius and the grid scale

L =
2∆s λ1

∆s + λ1
, (12.100)

where
∆s =

2∆x∆y
∆x + ∆y

. (12.101)

The ratios provide for a smoother length scale than the alternative usage of mini-
mum functions. In particular, (a) when ∆s << λ1, then L ≈ ∆s, (b) when ∆s = λ1,
then L = λ1, and (c) when ∆s >> λ1, then L ≈ λ1.

12.4.8.2 Velocity scale

To remedy the numerical problem with an increasing Eady growth rate for refined
grids, we propose to use the following velocity scale

V =
2 Vm Vqg

Vm + Vqg
. (12.102)

The velocity scale Vm is a constant motivated from numerical considerations∗ and
is a tuning parameter, with common values on the order

Vm = 0.05 m s−1. (12.103)

The velocity scale
Vqg = L T−1 (12.104)

is motivated from the quasi-geostrophic theories using the Eady growth rate (12.85)
to compute T−1, and the length scale is taken from equation (12.100). Instead of
limiting the integration to be over an a priori specified depth range, as suggested by
Treguier et al. (1997), we prefer to integrate over the full depth range. Yet contribu-
tions from unstratified regions should be limited by the maximum slope allowed
for numerical stability, which is typically around 0.01.

12.5 Biharmonic operators

Biharmonic tracer operators dissipate tracer variance. As with the biharmonic fric-
tion operators discussed in Section 15.9, they concentrate dissipation at the smaller

∗Such a velocity scale was suggested by Eric Chassignet in personal communication 1999.
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scales than Laplacian operators, thus allowing the larger scales to be more advec-
tively dominant. It is for this reason that biharmonic operators are typically pre-
ferred for eddying simulations, where it is desirable to allow the flow to exhibit its
natural tendency towards hydrodynamic instability.

In practice, the general ideas mentioned above have not proven to be relevant
for tracers. That is, for the purpose of enhancing the advectively dominant aspects
of the flow, it has been found unnecessary to employ biharmonic tracer operators,
so long as biharmonic friction is used. The main point is that dissipation of flow
features is dominated by friction, thus warranting biharmonic friction when aim-
ing to allow for a broader range of advectively dominant flow. The use of either
a biharmonic or Laplacian tracer operator is not so crucial, so long as the tracer
diffusivity is appropriately tuned.

The above conclusion came to the author as a surprise, and only after having
considered the pros and cons of various biharmonic tracer operators described in
this section. Although just the traditional horizontal biharmonic tracer operator is
supported in MOM4, we present the following analysis of some rather interesting,
albeit not so useful, biharmonic tracer operators. Points relevant for implementat-
ing these operators are also made for those wishing to numerically test the opera-
tors. Note that the discussion in this section is limited to Boussinesq fluids.

An additional fundamental reason for avoiding the use of biharmonic tracer
operators is that they produce sign-indefinite tracer fluxes. When running models
with more than one active tracer, such fluxes generally produce a sign-indefinite
cabbeling term, which is unphysical as we saw in Section 12.1.7. This result points
to a fundamental problem with many of the biharmonic operators discussed in this
section, in that they are not readily generalized in a satisfying manner to the realistic
case of more than one active tracer.

Before starting the analysis, we mention the common practice in the isopyc-
nal modeling community. For isopycnal models, biharmonic friction is commonly
used in eddying simulations (e.g., Griffies and Hallberg (2000)). The transport of
tracers, however, is typically implemented via a positive-definite dissipative ad-
vection scheme, with zero added explicit diffusion. Many models use dissipative
advection schemes that have truncation errors appearing as Laplacian isopycnal
diffusion. In this case, the isopycnal simulations are a direct analog of what we
contend is relevant for z-coordinate eddying simulations.

12.5.1 Tracer variance

As in Section 11.4.1, we find occasion both in this section and Section 14.1 to con-
sider the effects on tracer variance of certain operators. For our purposes with
Boussinesq fluids, tracer variance is given by

V = V−1
∫

dV C 2 −V−1
(
∫

dV C
)2

, (12.105)

where V =
∫

dV is the volume of seawater in the domain. In a conservative ocean
system without sources and sinks, the total tracer mass

∫

(ρo dV) C and total vol-
ume are constant with time. However, the total squared tracer can change due to
transport effects. Therefore, changes in tracer variance are equivalent to changes in
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integrated squared tracer
∫

dV C 2, and so for our purposes the two are considered
the same.

12.5.2 Horizontal biharmonic mixing

Let us start with the traditional horizontal biharmonic operator. This operator is an
iteration on the horizontal Laplacian operator, and the horizontal biharmonic tracer
flux is given by

FB =
√

B∇zL (12.106)

where
L = ∇z · (

√
B∇zC) (12.107)

is the horizontal Laplacian operator acting on the tracer, and B > 0 is a bihar-
monic mixing coefficient with units (length)4 (time)−1. The convergence of the
biharmonic flux FB yields the horizontal biharmonic mixing operator.

RB = −∇ · FB. (12.108)

We illustrate the biharmonic operator’s variance dissipation property via the fol-
lowing manipulations

1
2

∂t

∫

dV C2 = −
∫

dV C∇z · FB

= −
∫

dV∇z · (C FB) +
∫

dV∇zC · FB

=
∫

dV
√

B∇zC · ∇zL

=
∫

dV∇z · (
√

B L∇zC)−
∫

dV L2

= −
∫

dV L2 ≤ 0. (12.109)

To reach this result, we assumed that the horizontal Laplacian and biharmonic
tracer fluxes satisfy no-flux side boundary conditions

n̂ ·
√

B∇zC = 0 (12.110)
n̂ · FB = 0. (12.111)

We also ignored free surface boundary effects. Even if the tracer gradients do not
vanish at the boundaries, the flux can still vanish if the diffusivity is assumed
to vanish there. Either way, this boundary condition is easily ensured via masks
placed on the numerical model’s flux components.

Notably, without the square root on the biharmonic mixing coefficient, tracer
variance is not generally dissipated when using a spatially dependent diffusivity
since it is no longer possible to form a perfect square. This point was discussed by
Griffies and Hallberg (2000) in the context of biharmonic friction.

The orientation of the biharmonic flux relative to the tracer field

FB · ∇zC =
√

B∇zL · ∇zC, (12.112)
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is not sign definite. Hence, the biharmonic flux is not generally down the tracer
gradient. It therefore cannot be considered a downgradient diffusive flux, whereas
the Laplacian analog is strictly downgradient. As discussed in Section 12.1.7, such
sign-indefinite mixing flux leads to a sign-indefinite cabbeling term, which is un-
physical. This is a fundamental reason for avoiding the use of any biharmonic
tracer operator in ocean simulations.

In MOM4, horizontal biharmonic mixing is trivial to implement. The only detail
concerns the boundary conditions. As mentioned above, variance reduction is en-
sured by setting no-flux conditions on the biharmonic flux just as for the Laplacian
flux.

12.5.3 Neutral biharmonic mixing

We now extend the Laplacian neutral diffusion of Solomon (1971) and Redi (1982)
into the biharmonic realm, thus leading to a neutral biharmonic mixing operator.
This operator represents a direct analog of the horizontal biharmonic mixing oper-
ator. It also suffers from the same sign-indefinite nature of the local tracer flux, thus
leading to unphysical cabbeling processes.

As with horizontal biharmonic mixing, we employ an iterative approach to con-
struct the neutral biharmonic mixing operator. Hence, the m’th component of the
neutral biharmonic flux is given by

Fm
B = Kmn L,n (12.113)

where
L = (Kpq C,q),p (12.114)

is the Laplacian neutral diffusion operator. As a vector, the biharmonic flux is writ-
ten

FB =
√

B (∇ρ + ẑ S · ∇ρ) L, (12.115)

and the biharmonic operator is computed as the convergence of the neutral bihar-
monic flux

RB = −∇ · FB. (12.116)

As for horizontal biharmonic mixing in Section 12.5.2, we apply the diffusivity sym-
metrically at each stage of the calculation with a square-root of the full biharmonic
diffusivity. This approach ensures variance reduction with non-constant diffusivi-
ties, as seen via the following manipulations

1
2

∂t

∫

dV C2 = −
∫

dV C∇z · FB

= −
∫

dV∇z · (C FB) +
∫

dV∇zC · FB

=
∫

dV Kmn C,m L,n

=
∫

dV (L Kmn C,m),n −
∫

dV L2

= −
∫

dV L2 ≤ 0. (12.117)
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To reach this result, we assumed both the Laplacian and biharmonic tracer fluxes
vanish at the side boundaries

n̂m Kmn C,n = 0 (12.118)
n̂m Kmn L,n = 0. (12.119)

As for horizontal biharmonic mixing, these no-flux boundary conditions are easily
established in the numerical model via masks. Furthermore, as for the Laplacian
neutral diffusion case, the neutral biharmonic flux vanishes for tracers aligned with
the neutral directions.

The numerical algorithm proceeds as for the horizontal biharmonic operator.
First, the full neutral Laplacian diffusion operator L is computed. For the second
iteration, L is treated as the new “tracer” and the neutral biharmonic operator then
constructed. Notably, the diagonal term in the vertical biharmonic flux contributes
to the time evolution in an implicit manner, just as used when performing Laplacian
neutral diffusion (see Section 14.8.3 for details).

12.5.4 Roberts and Marshall’s biharmonic stirring operator

Roberts and Marshall (1998) (RM98) considered the following divergence-free ve-
locity

u∗ = ∇∧Υ = ∂z∇2
z(B S)− ẑ∇z · ∇2

z(B S), (12.120)

where the vector streamfunction is

Υ = −ẑ ∧∇2
z(B S) (12.121)

with B > 0 a biharmonic mixing coefficient. The corresponding skew flux is given
by

F = −C,z∇2
z (B S) + ẑ∇zC · ∇2

z (B S). (12.122)

Dropping the horizontal Laplacian∇2
z , and setting B→ −κ, recovers the Laplacian

GM90 scheme of Section 12.2.
Enhanced scale selectivity with the operator is afforded to the buoyancy field.

Indeed, RM98 showed that for buoyancy, this operator is quite effective at dissi-
pating grid scale variance while reducing spurious diapycnal mixing. For other
tracers, the operator remains second order and so is not as scale selective as either
the horizontal or neutral biharmonic mixing operators.

RM98 termed their operator a “biharmonic GM” operator since it represents
a straightforward generalization of the usual “Laplacian GM” operator. Yet, as
shown by RM98 and in the following, their biharmonic operator does not generally
dissipate potential energy, whereas the Laplacian GM operator does. Therefore, the
RM98 operator is perhaps better considered another one of many possible neutral
biharmonic operators.

12.5.4.1 Effects on potential energy of the RM98 operator

Consider how the RM98 operator affects the potential energy for the case when
density is a linear function of potential temperature. A similar discussion was given
in the RM98 paper, where they employed the advective flux formulation rather
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than the skew-flux formulation. Focusing just on the biharmonic operator, the time
tendency for potential energy is given by

P,t = g
∫

dV zρ,t

= −g
∫

dV z∇ · F

= g
∫

dV F(z), (12.123)

where the no-normal flux condition at the sides was assumed. Note that for sim-
plicity, a rigid lid was also assumed, although this assumption has no bearing on
the effects the g

∫

dV F(z) term has on the evolution of the total potential energy.
Introducing the vertical component to the RM98 skew-flux leads to
∫

dV F(z) = −
∫

dV Bρ,z S · ∇2
zS

= −
∫

dV ∇z · (Bρ,z Sm∇zSm) +
∫

dV ∇z(Bρ,z Sm) · ∇zSm, (12.124)

where m = 1, 2 is summed. Assuming Bρ,z Si vanishes next to the lateral ocean
boundaries allows for the total derivative term to be dropped. This term may be
set to zero via model masks, and it may formally be associated with a vanishing
diffusivity at this boundary. The result is

∫

dV F(z) = (1/2)
∫

dV ∇z (Bρ,z) · ∇zS2 +
∫

dV Bρ,z (∂mS · ∂mS), (12.125)

where S2 = S · S, and m = 1, 2 is summed in the second term over the horizon-
tal spatial dimensions. The second term is non-positive in stably stratified fluids,
for which ρ,z ≤ 0. It therefore represents a potential energy sink. The first term,
however, is sign indefinite even when B is a constant. For the special case of Bρ,z
independent of horizontal position, the first term vanishes and so potential energy
is reduced. For example, the special density profile ρ = ρo(z) + ρ1 cos(p · x), with
p a horizontal wave vector, has Bρ,z horizontally constant if B is constant, and so
the potential energy is reduced. In the slightly more general case of constant B and
with ρ,z = ∂zρo + ∂zρ1, where |∂zρo| >> |∂zρ1|, the first term in the expression
for potential energy is nonzero, but subdominant to the second term. So potential
energy is again reduced in this case. It is unclear what happens for more general
profiles.

It might be speculated that the inability to prove that the potential energy is
generally reduced may indicate that the RM98 operator is unstable. However, if
numerically implemented according to the triad approach of Griffies et al. (1998),
the discretized RM98 skew-flux preserves density variance. As variance growth is
typically associated with linearly unstable numerical schemes, any potential insta-
bility of the RM98 scheme will likely be nonlinear. So far, no such instabilities have
been encountered. Rather, the operator appears to be quite stable in a wide suite of
both coarse and fine models (M. Roberts, personal communication 1998). Hence, it
is unclear how important it is to provide a potential energy sink with the stirring
operators.



278 CHAPTER 12. NEUTRAL TRANSPORT: PART II

12.5.4.2 Flux for a particular density profile

Recall from Section 12.2.1 that in the special case of a linear equation of state, the
GM90 density skew-flux takes the especially simple form

F(h)(ρ) = −κ∇zρ (12.126)

F(z)(ρ) = κ S2ρ,z. (12.127)

With a stable density profile, ρ,z < 0, thus leading to a negative vertical skew-flux
component. In general, the horizontal GM90 skew-flux components are directed
down the density gradient, and the vertical component is upgradient. With an
always upgradient flux of density, the GM90 scheme always decreases the potential
energy in a stably stratified fluid.

As just seen, this potential energy dissipation property is not generally respected
by the RM98 operator. However, it is useful to highlight a case where these proper-
ties are shared, such as the case where density is given by

ρ = ρo(z) + ρ1 cos(p · x), (12.128)

with ρo(z) a stable vertical profile, ρ1 an amplitude function, and p = (px, py, 0) a
horizontal wave-vector. The slope vector for this profile is given by

S =
ρ1 p sin(p · x)

ρ′o(z)
, (12.129)

and the horizontal Laplacian is

∇2
zS = −p2 S, (12.130)

where p2 = p · p. The RM98 skew-flux therefore takes the form

F(h) = (B p2) S C,z (12.131)

F(z) = −(B p2) S · ∇zC. (12.132)

The RM98 skew-flux of density, linearly dependent on temperature, is given by

F(h)(ρ) = −(B p2)∇zρ (12.133)

F(z)(ρ) = (B p2) S2 ρ,z. (12.134)

Hence, for this profile, the horizontal RM98 density skew-flux components are
down the horizontal density gradient, and the vertical skew-flux component is up
the vertical density gradient. Potential energy is therefore dissipated. The effec-
tive diffusivity is scale-dependent, with small scales, or large p2, acted on with the
largest effective diffusivity.

12.5.5 Gent’s biharmonic stirring operator

As reported in Roberts and Marshall (1998), P. Gent suggested the alternative ve-
locity

u∗ = ∇∧Υ = −∂z∇z M + ẑ∇2
z M, (12.135)
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with vector streamfunction
Υ = ẑ ∧∇z M (12.136)

and

M = B
(

∇2
z ρ

ρ,z

)

. (12.137)

The corresponding skew flux is given by

F = C,z∇z M− ẑ∇zC · ∇z M. (12.138)

In contrast to the RM98 operator, the Gent operator provides a sign definite sink of
potential energy for any given density profile, as seen since the integrated vertical
skew-flux component is negative semi-definite in stably stratified water

∫

dV F(z) = −
∫

dV ∇z

(

B
∇2

zρ

ρ,z

)

· ∇zρ

=
∫

dV ∇z · (B S∇2
zρ) +

∫

dV (B/ρ,z)
(

∇2
zρ
)2

. (12.139)

The first term can be dropped when assuming B S∇2
zρ vanishes at horizontal bound-

aries. The second term is non-positive in stably stratified water, and so represents
a potential energy sink for any density profile. Notably, the spectral representation
of this operator when acting on the density profile ρ = ρ0(z) + ρ1 cos(k · x) is the
same as the RM98 operator given by equations (12.131) and (12.132).

The Gent biharmonic operator cannot be discretized using the proven technol-
ogy developed by Griffies et al. (1998), Griffies (1998) (see chapters 13 and 14 for
details). The reason is that the slope vector S is not a fundamental piece of the Gent
operator, whereas it is fundamental for all other neutral physics schemes.

12.5.6 Neutral biharmonic filtering

The neutral biharmonic filtering operator is designed with the following points in
mind:

1. Neutral biharmonic mixing does not act on buoyancy, except through effects
due to the nonlinear equation of state. Hence, an alternative means for scale-
selective buoyancy dissipation should be considered.

2. Horizontal biharmonic mixing provides a cheap, scale-selective dissipation
mechanism.

3. However, the horizontal orientation of the horizontal biharmonic flux intro-
duces too much diapycnal mixing, and so it is necessary to re-orient the flux
according to the neutral directions.

These points motivate us to consider the following tracer flux

F =
√

B (∇z + ẑ S · ∇z) L, (12.140)

with
L = ∇z · (

√
B∇zC) (12.141)
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the horizontal Laplacian diffusion operator. The convergence of the horizontal flux
components F(h) =

√
B∇zL yields the familiar horizontal biharmonic operator, yet

the vertical flux component F(z) = S · F(h) is chosen to orient the three-dimensional
flux vector parallel to the neutral direction (see Figure 11.1). That is,

F · ∇ρ = 0, (12.142)

which is analogous to the neutral diffusive fluxes. However, in contrast to the neu-
tral diffusive fluxes, F(ρ) 6= 0. Instead, F(ρ) is a skew flux and so has a correspond-
ing advection velocity (see equation (12.146)).

When acting on the tracer profile

C = Co(z) + C1(z) cos(p · x) (12.143)

with constant biharmonic coefficient B, the flux (12.140) takes the form

F = −B p2 (∇z + ẑ S · ∇z)C. (12.144)

The horizontal flux components are downgradient and scale-selective, yet the ori-
entation of the vertical flux depends on the relative orientation of the tracer and the
neutral slopes. When C = ρ,

F = −B p2 (∇zρ− ẑ S2ρ,z). (12.145)

Since the vertical skew-flux component is upgradient, this profile has its potential
energy dissipated. Note the slight generalization of this result compared to that of
the GM98 operator, where potential energy is dissipated only when ρ1(z) → ρ1.
However, as with the RM98 operator, an arbitrary density profile is not guaranteed
to have its potential energy dissipated.

It is useful to highlight the different perspective taken here as compared to
RM98 and Gent considered in Sections 12.5.4 and 12.5.5. Both RM98 and Gent fo-
cused on the advective form of GM90, which led them to their higher order eddy-
induced advection velocity. That is, they both proposed a stirring process. In con-
trast, the neutral biharmonic filter only stirs density (assuming a linear equation of
state), in which case one can associate the following advection velocity

u∗ = ∇∧Υ = −∂z

(√
B
∇zL
ρ,z

)

+ ẑ∇z ·
(√

B
∇zL
ρ,z

)

, (12.146)

where the vector streamfunction is

Υ = ẑ ∧
(√

B
∇zL
ρ,z

)

. (12.147)

For other tracers, however, the new operator produces mixing fluxes oriented along
the neutral direction. Hence, there is no corresponding advection velocity.

Numerical discretization of the horizontal flux components follows from the
usual methods for horizontal biharmonic mixing. Notably, the horizontal fluxes
are applied for all values of the neutral direction slope. The vertical flux follows
the triad approach described in Chapter 14, with tapering applied in steep sloped
regions as described in Section 13.1.5.
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12.5.7 Biharmonic skew filtering operator

Another biharmonic operator, closely related to the neutral biharmonic filtering
operator given in Section 12.5.6, is termed here a biharmonic skew filtering operator.
The tracer flux for this operator is given by

F =
√

B (∇z + ẑ S(C) · ∇z) L. (12.148)

Importantly, the slope here is that of the particular tracer

S(C) = −
(

∇zC
C,z

)

. (12.149)

In contrast, the neutral filter flux (12.140) is constructed with the neutral slope S(C)
for all tracers. Both fluxes are the same in the special case of a linear equation of
state with C = ρ. However, in general the fluxes are distinct.

When density is a function of both temperature and salinity, separately stir-
ring temperature and salinity with the biharmonic skew filtering operator gener-
ally mixes density. Hence, biharmonic skew filtering is not useful for active tracers.
Yet it may be a useful means to suppress noise in passive tracer fields. However,
the approach may become quite computationally burdensome when adding many
passive tracers since the cost of computing successively more tracer slopes is non-
trivial. Instead, one may be more motivated to consider neutral biharmonic mixing
discussed in Section 12.5.3 for passive tracers.

12.5.8 A note on iterative Laplacian skewsion processes

As noted in Section 12.5.2, the horizontal biharmonic flux is not generally oriented
down the horizontal tracer gradient; likewise for the neutral biharmonic mixing
operator. It is for this reason that these biharmonic operators are termed “mixing”
operators rather than “diffusive” operators. Even so, they satisfy the usual global
constraint of reducing tracer variance, hence their utility as dissipation operators.
Furthermore, the neutral biharmonic mixing operator remains true to the needs of
fluxing tracers along the neutral directions. That is, the operator vanishes when a
tracer is aligned with the neutral direction.

The three biharmonic operators acting on buoyancy each provide for an adia-
batic stirring of buoyancy. However, neither completely represents a straightfor-
ward iteration of a Laplacian stirring operator. There is good reason for such: it-
eration of a Laplacian skewsion process does not generally lead to a biharmonic
skewsion process. Hence, there is ambiguity concerning the choice of an appropri-
ate skewed biharmonic operator.
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An implementation of neutral physics in an ocean climate model must address
the question of what to do when neutral slopes steepen, as they will in realistic
simulations. Numerical stability warrants some form of tapering towards a non-
neutral oriented scheme. Are there physical reasons to do so as well? We address
this, and other related, questions in this chapter. That is, we consider issues related
to how neutral physical processes are handled in regions near boundaries and/or
where neutral slopes are steep, such as the surface boundary layer. Simulations are
sensitive to details in these regions, and much of this discussion is at the level of
active research. The reader should therefore consider this material with a healthy
bit of skepticism.
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13.1 Linear numerical stability for neutral diffusion

There are various methods to preserve linear numerical stability of neutral diffu-
sion in regions of steep neutral slopes. One method is to employ the full diffusion
tensor (Section 12.1). This tensor has finite values regardless the value of the neutral
slopes. Hence, its discretization generally requires no artificial numerical regular-
ization, so long as a reasonable time step condition is maintained (see Appendix C
of Griffies et al. (1998) for discussion). However, the full Redi tensor contains terms
that are very small throughout the bulk of the ocean where slopes are modest, and
these terms are awkward and expensive to compute. Additionally, as argued in
later sections in this Chapter, there is little physical motivation to maintain the in-
tegrity of neutrally oriented diffusion in regions where the neutral slopes are steep.
That is, we are not motivated physically to use the full Redi tensor since the small
angle approximation (Section 12.1) is sufficient for all ocean climate related pur-
poses using z-models.

Hence, we are motivated to use the small slope neutral diffusion tensor. This
tensor, however, is not bounded as the neutral slopes increase, and so a regulariza-
tion method is needed for simulations where the slopes can be vertical. Relatedly,
when the slope of the neutral direction is large, it is possible for the neutral diffu-
sive flux to project substantially onto the vertical direction. Because the vertical grid
spacing is generally much smaller than the horizontal, care is needed to preserve
numerical stability in regions of steep neutral slopes. Consequently, one must pre-
scribe a sensible regularization method for ocean climate models, where the neutral
slope generally can become vertical.

One approach for maintaining numerical stability is to solve the neutral diffu-
sion operator implicitly, as already done for most models for their vertical physics
schemes. However, since neutral diffusion has lateral flux components, an implicit
solution method involves the whole horizontal grid. Additionally, the possibility of
inifinite slopes, and correspondingly infinite fluxes, makes even an implicit scheme
numerically sensitive. Such an approach is therefore not practical in a realistic cli-
mate model and so is not pursued. The remainder of this section presents other
options. The discussion represents in part an abbreviated form of that given in
Appendix C of Griffies et al. (1998).

13.1.1 Linear stability analysis for Laplacian neutral diffusion

The linear stability constraints described in Section 16.1.2 for un-rotated diffusion
are extended here to the case of rotated diffusion. It has been found sufficient in
practice to assume that stability for rotated diffusion is ensured if stability for each
of the three directions separately holds. Less stringent constraints may result from
a more general analysis, but such is not pursued here.

The linear numerical constraint from the diffusion equation, as discussed in
Section 16.1.2 and Cox (1987), indicates that an explicit numerical scheme with a
2∆t forward time step is stable if the grid CFL number satisfies

|Kmn|∆ t
∆ xm∆ xn

≤ 1
4

, (13.1)

where Kmn are components of the diffusion tensor (12.20), and the inequality must
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hold for all combinations of m, n = x, y, z. Assuming a geophysically relevant ver-
tical to horizontal aspect ratio for the grid (∆z/∆x ≤ 1/100), the two dimensional
horizontal sub-system is stable when the diffusion equation in the horizontal is sta-
ble. In general, satisfying this stability constraint in the horizontal is trivial and so
is not considered further. Solving the vertical Kzz diagonal piece implicitly, as done
by Cox (1987), points to the Kxz and Kyz cross terms as setting the most restrictive
constraint. From these terms, the small angle neutral diffusion equation is linearly
stable when, for each grid cell,

|Sa| ≤
∆a∆ z
4AI∆ t

≡ δ, (13.2)

where ∆a is either ∆x or ∆y. The parameter δ represents the maximum allowable
slope that can be used before some prescription must be employed to ensure nu-
merical stability. For many large-scale ocean model configurations, this slope check
parameter is roughly 1/100.

As discussed in Section 12.1.4, neutral slopes are typically smaller than 1/100
for the interior ocean away from mixed layers and convective regions. For slopes
larger than 1/100, the motivation to remain “true” to the neutrally directed diffu-
sion process remains less physically compelling. The reason is that in such large
sloped regions, the ocean admits many other leading processes, such as three-
dimensional boundary layer turbulence which generally mixes across neutral di-
rections as well as along. Hence, restricting neutral diffusion to act in an unregu-
larized manner only for slopes less than 1/100 is not physically restrictive. Impor-
tantly, although we are not guided so much from physical principles regarding reg-
ularization scheme details, these details generally do matter, largely because they
affect the upper ocean where boundary layer processes are crucial to establishing
the ocean climate model’s physical integrity. Hence, great care must be exercised,
and it is furthermore important to test solution sensitivity to the various regular-
ization approaches.

13.1.2 Linear stability analysis for biharmonic neutral mixing

Although argued to be of little physical or numerical utility, we list here the linear
constraint for biharmonic neutral mixing discussed in Section 12.5.3. Following
the previous subsection and building from the horizontal biharmonic analysis of
Section 16.1.2 leads to the constraint

|Sa| ≤
(∆a)3 ∆ z
64 B∆ t

≡ δ. (13.3)

Again, δ represents the maximum allowable slope which can be used before some
prescription must be employed to ensure numerical stability. As for Laplacian neu-
tral diffusion, for many large-scale ocean model configurations δ is roughly 1/100.

13.1.3 Slope clipping the neutral diffusive fluxes

The first approach to maintaining numerical stability for small slope neutral diffu-
sion is the slope clipping scheme of Cox (1987). Slope clipping limits the slope along
which neutral diffusion occurs. For example, when the x-slope satisfies |Sx| > Sclip,
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with Sclip some maximum slope usually taken as a fraction of the grid parameter δ
given in equation (13.2), then

ρ,z → (ρ,z)clip, (13.4)

where

Sclip =
|ρ,x|

(ρ,z)clip
. (13.5)

The same sort of clipping is applied independently to the y-component of the slope.
Limiting the slopes along which the fluxes are directed introduces significant

false dianeutral fluxes in those regions where the actual slopes exceed the clipped
slope. As mentioned in Section 12.1.4, one may expect increased cross-neutral
fluxes in regions of steep slopes where there is the potential for enhanced energy
release at all scales. Therefore, one may guess that slope clipping is a reasonable
parameterization of these effects. However, the amount of uncontrolled fluxes can
be egregiously large and unphysical.

An idealized example should convince the reader that slope clipping is not ap-
propriate. Consider the case where density is a linear function only of potential
temperature, and there are no vertical or meridional gradients. If maintaining a
true neutral nature to the diffusive flux, each component of the temperature flux
should vanish. However, as mentioned above, the clipped flux does not vanish. In
particular, the off-diagonal piece of the vertical neutral flux of temperature becomes

Fz clip = AI |θ,x| Sclip > 0. (13.6)

The diagonal piece S2θ,z is handled via an implicit time stepping scheme. Focus-
ing on the clipped off-diagonal term here, consider the typical case where AI =
103m2 sec−1, Sclip = 0.01, θ,x = 10−5 ◦K m−1. In this case, the clipped piece con-
tributes to a vertical flux of potential temperature with magnitude 10−4 ◦K m sec−1.
When multiplied by ρoCp ≈ 4× 106 J/(m3 ◦K), the clipped flux contributes a heat
flux of roughly 400 W m−2. This is a substantial unphysical heat flux. It has been
seen to affect the solution integrity especially in convective regions of models run
with this scheme. This result motivates other, more physically satisfying, means to
satisfy linear stability constraints in regions of steep neutral slopes.

13.1.4 Quadratic tapering the neutral diffusive fluxes

Two methods aim to maintain numerical stability via a rescaling or tapering of the
along neutral diffusivity. The diffusive flux remains oriented along the neutral di-
rection, yet its magnitude is scaled smaller according to the steepness of the slope,
once the slope reaches above some a priori set maximum slope.

The prescription of Gerdes et al. (1991) was the first method aiming to preserve
the neutral orientation of the flux regardless the slopes. It does so via a quadrat-
ical rescaling of the diffusivity to a smaller value. That is, if the slope satisfies
|S| > Smax, where Smax is the maximum slope, then the corresponding diffusivity
is rescaled as

AI → AI

(

Smax

S

)2

. (13.7)
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A quadratic rescaling is suggested by the quadratic term 1 + S2 in the full slope
neutral diffusion tensor given in equation (12.18).

Notably, as for the full slope tensor, the Gerdes et al. (1991) taper does not re-
move all components of the neutral diffusion tensor as the slope goes vertical. In-
stead, it leaves the diagonal (3, 3) term saturated at the value

AI S2 → AI S2
max, (13.8)

whereas all other components taper to zero. With maximum slope of 1/100 in each
of the two horizontal directions, and diffusivity of AI = 103 m2 s−1,

AI S2
max = 0.2m2 s−1. (13.9)

This is a large vertical diffusivity. In some cases, its effects will be much smaller
than those from convective adjustment. However, this diffusivity is comparable to
that diagnosed from some mixed layer schemes. This confusion of vertical mixing
effects motivates us to look for yet another approach that allows for a clean separa-
tion.

13.1.5 Exponential tapering the neutral diffusive fluxes

Danabasoglu and McWilliams (1995) introduced an alternative rescaling in which
the quadratic factor of Gerdes et al. (1991) is changed to a hyperbolic tangent

AI → AI Ttanh (13.10)

with

Ttanh =
(

1 + tanh
(

Smax − |S|
Sd

))

(13.11)

the exponentially rapid taper function where Sd determines the width of the tran-
sition region. Since the hyperbolic tangent rapidly moves between its limiting val-
ues, it is possible to always taper the diffusivity instead of introducing the “if-test”
check necessary for the quadratic tapering. Such continuous tapering is familiar
from numerical implementations of physical processes such as vertical mixing.

This form of tapering ensures that all components of the neutral mixing tensor
are rapidly scaled to zero as the slope becomes larger than Smax. Notably, even
the (3, 3) diagonal term is exponentially tapered to zero, and so this method does
not suffer from the problem of the Gerdes et al. (1991) scheme identified in Section
13.1.4.

13.2 Linear stability for GM stirring

Skew fluxes from GM remain numerically stable so long as the corresponding eddy-
induced velocity components maintain the same CFL constraint that the Eulerian
velocities maintain. For illustrative purposes, let us assume the maximum CFL
velocity is 1m s−1. The scaling relation

U∗ ∼ κ S
∆z

, (13.12)
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withκ = 103 m2 s−1 and ∆z = 10 m, indicates that the slope S can be no larger than
0.01 in order for U∗ to be less than 1m s−1. As discussed in Section 13.1, this slope
corresponds to that typically setting the largest slope allowable for stable small
slope neutral diffusion. Hence, it is practical to provide a numerically stable GM
scheme if the GM flux is computed as if the slope times diffusivity cannot get any
larger than the maximum value

κS→ (κ S)max (13.13)

in the regions where S > Smax.
If we wish to maintain a nontrivial GM flux even when the neutral slopes are

vertical, care must be exercised when introducing numerical artifices commonly
used to eliminate computational overflows. A useful method for this purpose is to
compute the neutral slope as

S = −
(

∇zρ

ρ,z −ε

)

= −
(

−α∇zθ+β∇zs
−αθ,z +β s,z −ε

)

. (13.14)

The small number ε > 0 is placed in the denominator to prevent computational
overflows when there is no vertical stratification. Crucially, its contribution is sub-
tracted from the denominator in order to provide the correct sign of the slope when
ρ,z → 0−. The example given by Figure 13.1 illustrates this point. In this fig-
ure, the x-projection of the neutral slope is positive, Sx > 0. Notably, the slope
becomes vertical when moving towards the eastern-most isopycnal surface region
since ρ,z → 0−. The subtraction of ε in the denominator is necessary to have the
computed slope go to +∞. If one instead used a +ε in the denominator, the com-
puted slope would go to −∞ and so yield unphysical and unstable behavior.

z

x

light

heavy

Figure 13.1: An example of steeply sloping isopycnals, where the slope in the x-
direction, Sx = −ρ,x/ρ,z is large and positive, especially near the surface in the east.
The numerical slope computation must maintain this positive sign to compute the
correct sign for the GM fluxes.

13.3 Neutral physics near boundaries

What to do with the neutral physics schemes when entering boundary regions,
which are often where steep neutral slopes occur, remains a research question.
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Should all neutral physics processes be turned off via some tapering scheme? Or
should some of the parameterizations remain, such as GM? Should there be hori-
zontal diffusion in the boundary layer, and if so, then what diffusivity should be
used? Should neutral diffusivities remain the same as the skew-diffusivities regard-
less the neutral slope? How sensitive are the solutions to the choices?

This section provides some recommended answers to these questions. Most of
the issues are physically based, although it is difficult to cleanly separate physi-
cal from numerical in this region, since we know from the previous discussion in
this chapter that numerical considerations are imposed on us in most boundary re-
gions. Given the research nature of these topics, a healthy skepticism is suggested.
Throughout the discussion, we focus on the surface boundary layer, although we
provide some comment on the bottom boundary layer.

13.3.1 General considerations

Surface and bottom boundary layers are typically where three-dimensional turbu-
lent processes occur (e.g., Large et al. (1994)). Notably, the surface boundary layer
is where strong diabatic processes associated with air-sea, ice-sea, and river-sea in-
teractions occur. These physical considerations temper attempts to maintain the
“purity” of neutral diffusion in such regions, where indeed such purity is more dif-
ficult to numerically maintain relative to the ocean interior. Instead, Treguier et al.
(1997) note that the lateral mixing effects from eddies in the surface boundary layer
should be parameterized via a horizontal diffusion, which is in fact diapycnal in re-
gions where the neutral slopes are steeply sloped. These ideas suggest reducing
neutral diffusion in the surface boundary layer to horizontal diffusion.

Haine and Marshall (1998) point out that mesoscale eddies retain an adiabatic
slumping effect in surface boundary layer. Similarly, Send and Marshall (1995) and
Visbeck et al. (1996) cite similar effects in regions of deep convection. Maintaining
nonzero GM in these regions can provide an effective parameterization of these
processes, and we provide a numerical method in the following for doing so.

These general considerations, and the discussion in this section, lead to the fol-
lowing recommendations for how to handle neutral physics in the surface bound-
ary region.

• For neutral diffusion, replace the small angle neutral flux components with
horizontal diffusive flux components in regions of steep neutral slopes and/or
within some distance of boundaries.

• Maintain a non-zero GM skew-flux in the surface boundary region where
neutral slopes are large. Do so by linearly tapering κ S to zero over the depth
of the boundary layer. This approach leads to a constant horizontal eddy-
induced velocity throughout the boundary layer, and a vertical eddy-induced
velocity that is linearly tapered to zero as the ocean surface is approached.

• In regions with shallow neutral slopes that are near the surface boundaries,
taper the neutral flux components to parameterize the truncation of the verti-
cal eddy transport due to the presence of a boundary.

• With nonzero GM fluxes in the boundary layer such as recommended above,
it is essential to ensure GM always acts on a stably stratified column, thus
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necessitating the use of a full convection scheme such as that from Rahmstorf
(1993). When combined with a large vertical diffusivity time stepped implic-
itly, the need to employ convective adjustment is reduced. This combined
use of vertical diffusion plus convective adjustment may alleviate some of
the unphysical behaviour sometimes characteristic of convective adjustment
schemes (e.g., Cessi (1996)).

13.3.2 Surface boundary condition for fluxes from neutral physics

The tracer flux entering through the ocean surface arises from coupled processes;
i.e., air-sea, river-sea, or ice-sea interations. The tracer flux entering through the
ocean bottom is associated with geothermal and/or other geological effects. Through
both interfaces there is zero tracer flux associated with neutral physics. Such can
be understood from the quasi-Stokes transport ideas discussed in Section 7.3.5.1,
as well as Section 8 of McDougall and McIntosh (2001). Analogously, we can un-
derstand these no-flux conditions as a statement of tracer conservation, whereby
all boundary fluxes of tracer are associated with transport from or to other compo-
nents in the climate system and are represented by physical processes not part of
the neutral physics schemes.

Figure 13.2 illustrates these points for a surface model grid cell. Notably, be-
cause there is always a zero vertical flux at the ocean surface from neutral physics
processes, there is a nontrivial jump in the vertical flux across the surface grid cell.
Hence, as the surface grid cell thickness is refined, the vertical divergence of the
vertical neutral physics tracer flux generally increases across the cell.

This numerical problem announces the need for some careful tapering of the
neutral flux as the surface is approached. Such is important regardless the neutral
slope, yet is most apparent in simulations where neutral slopes are nearly vertical in
the upper ocean, as within the boundary layer. In this case, tracer fluxes from neu-
tral physical processes, either from neutral diffusion or GM skew diffusion, can be
large and so can exhibit an especially large vertical gradient across the surface grid
cell. In either case, a large surface-trapped divergence reflects a physically-based
need to taper the neutral processes towards zero as the boundary is approached.
We now explain this reasoning.

13.3.3 A kinematic argument for tapering near a boundary

Recall from our discussion in Section 7.3.6 that an approximation for the vertical
displacement of a fluid parcel living on an undulating potential density surface is
given by equation (7.55), repeated here for convenience

ξ = −ρ′/∂zρ. (13.15)

In this equation, ρ is the potential density field explicitly carried by the numerical
model, and ρ′ is an eddy fluctuation. Now assume∗ that the fluctuation ρ′ is propor-
tional to a mixing length times the horizontal density gradient ∇zρ. For mesoscale
eddying motions, Smith and Vallis (2002) argued that the first baroclinic Rossby

∗Thanks to Geoff Vallis (2002) for making this suggestion.
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Figure 13.2: Details of how neutral physics is handled over the surface model grid
cell. There is a zero neutral physics tracer flux entering the top of this cell, yet there
is generally a nonzero flux crossing the bottom. Horizontal fluxes cross the sides of
the cell, as for interior cells away from boundaries. The inverse picture is realized
for tracer cells next to the ocean bottom, where there is zero vertical tracer flux from
neutral physics processes entering through the bottom face of the bottom cells.

radius R1 provides a useful mixing length. In this case, the vertical displacement
takes the form

ξ ∼ −R1 |∇zρ|/∂zρ = R1|S|, (13.16)

with |S| the magnitude of the neutral slope.
An analogous argument given in Appendix B of Large et al. (1997) and Sec-

tion 8 of McDougall and McIntosh (2001) suggests that in the absence of a bound-
ary, a typical neutrally directed displacement of a parcel is proportional to the first
baroclinic Rossby radius R1. For typical neutral slopes less than 1/100, this lateral
displacement is roughly the same as the horizontal displacement, and the corre-
sponding vertical displacement is given by ξ ∼ R1 |S|, which is the same result as
derived above. Figure 13.3 illustrates this argument.

When a fluid parcel nears a boundary, if the vertical displacement ξ ∼ R1 |S| is
greater than the distance to the boundary, the density surface associated with that
eddy is truncated or clipped by the boundary (see Treguier et al. (1997), Held and
Schneider (1999), and McDougall and McIntosh (2001) for discussions). In turn, the
quasi-Stokes transport associated with this eddy is truncated. Consequently, we
are obliged to reflect this truncation in the parameterized neutral physics fluxes.

13.3.4 Summary and recommendations

We have identified two reasons for tapering neutral physics schemes. First, there
are numerical constraints discussed in Sections 13.1 and 13.2 that preclude our
maintaining unregularized neutral physical processes in regions of steep neutral
slopes. Second, there are kinematic reasons for tapering near boundaries where
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R1
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tan(α

ξ

) = ξ/D << 1

Figure 13.3: A fluid parcel within a mesoscale eddy undergoes both a horizon-
tal and vertical displacement. The scale of the along neutral displacement is on
the order of the first baroclinic Rossby radius R1. Let the angle of the neutral
direction α from the vertical be such that the neutral direction is shallow sloped:
|S| = tanα << 1. In this case, the corresponding vertical displacement is given by
ξ = D |S| ≈ R1 |S|.

undulating density surfaces can outcrop or incrop, and so their effects on transport
are truncated.

There are two general methods to taper neutral physical processes. First, one
may taper towards zero all neutral physics processes as the boundary and/or steep
neutral slope region is approached. This is the approach favored by Large et al.
(1997) and McDougall and McIntosh (2001). Alternatively, one may taper to zero
only those pieces of the neutral physics schemes that affect a vertical transport. That
is, one may continue to provide a horizontal downgradient diffusion and horizontal
eddy-induced velocity transport. The vertical eddy-induced velocity must continue
to be tapered towards zero as it reaches the boundary.

The second approach, whereby a nontrivial parameterized horizontal advective-
diffusive transport is maintained near boundaries and/or in steep neutral slope re-
gions, is promoted in the following. In particular, we are motivated by discussions
in Treguier et al. (1997) and Held and Schneider (1999) which note that although
eddies within the surface boundary layer can no longer transport vertically across
the boundary, in the mean they affect a horizontal transport parameterizable as
horizontal diffusion. Additional arguments for maintaining a nontrivial horizontal
eddy-induced transport in the surface boundary layer are provided by the studies
of Send and Marshall (1995), Visbeck et al. (1996), and Haine and Marshall (1998).

13.3.4.1 Review of the mathematical form for the fluxes

For use in the following, recall from Section 12.2.2 that the horizontal and vertical
flux components arising from small-angle neutral diffusion, GM skewsion, plus
vertical diffusion take the form





F(x)

F(y)

F(z)



 =





AI 0 (AI −κ) Sx
0 AI (AI −κ) Sy

(AI +κ) Sx (AI +κ) Sy AD + AI S2









C,x
C,y
C,z



 (13.17)

which leads to the untapered flux components

F(h) = −AI ∇zC− (AI −κ) S C,z (13.18)

F(z) = −(AD + AI S2) C,z − (AI +κ) S · ∇zC. (13.19)
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In these equations, AI is the neutral diffusivity, AD is the vertical diffusivity, and κ
is the GM diffusivity. The first terms in the respective flux components are termed
“diagonal”, whereas the second terms are “off-diagonal”.

13.3.4.2 Suggestions for neutral diffusion

Following the discussion in Section 13.1, our recommended tapering method for
steep neutral slope regions employs the exponential taper of Danabasoglu and
McWilliams (1995), yet does not taper the horizontal diagonal diffusive terms. The
diagonal vertical piece is exponentially tapered as well in order to remove all verti-
cal flux contributions to neutral diffusion in such regions. In this way, the diffusive
flux components in steep neutral sloped regions reduce to those from horizontal-
vertical diffusion

|S| >> Smax and partial exp taper⇒
{

F(h) = −AI ∇zC
F(z) = −AD C,z.

(13.20)

Figure 13.4 illustrates this approach. The integrity of the horizontal neutral diffu-
sive flux components are “broken” in the steep sloped regions, thus compromising
the neutral orientation of the flux. Yet as argued in Section 13.3.1 and Treguier
et al. (1997), neutral orientation of the diffusive fluxes is not necessarily relevant in
such boundary layer regions. Notably, this approach does not lead to the numerical
problems identified in Section 13.1.3 associated with slope clipping, since the diffi-
culties there arose from a clipped form of the off-diagonal diffusion terms, which
are here properly tapered to zero.

Additional tapering is suggested in the near-boundary regions according to the
arguments in Section 13.3.3. That is, we taper in these regions even if the neutral
slope is shallow. In particular, we must ensure that there is a finite vertical diver-
gence across a surface or bottom boundary cell from neutral diffusive fluxes. Since
this tapering is meant to continuously truncate the neutral processes as the bound-
ary is reached, an exponential tapering is arguably too rapid. Instead, we prefer the
nearly linear tapering suggested by Large et al. (1997). In this case, to handle the
surface boundary, we compute at each grid point the dimensionless ratio of depth
of the grid point d to slope scaled Rossby radius

r =
d

R1 |S|
, (13.21)

and then compute the boundary tapered slope times diffusivity

AI S→ (AI S) Tsine (13.22)

where
Tsine = [1 + sin π (r− 1/2)]/2 (13.23)

defines a sine-taper function. Hence, in shallow sloped regions that are within a
distance R1 |S| of the ocean surface, we truncate the neutral flux components to

|S| ≤ Smax and depth < R1 |S| (13.24)

⇒
{

F(h) = −AI ∇zC− Tsine (AI S) C,z

F(z) = −AD C,z − Tsine (AI S) · (S C,z +∇zC).
(13.25)
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The first baroclinic Rossby radius is given by R1 = c/ f , with f = 2Ω sinφ
the Coriolis parameter and Large et al. (1997) suggesting the value c = 2m s−1 as
an approximate first baroclinic gravity wave speed. To handle the singularity at
the equator, Large et al. (1997) restrict R1 to the range 15km ≤ R1 ≤ 100km. An
example is illustrative. Let the slope over the upper ocean be the modest value
S = 1/1000 and let R1 = 100km, thus yielding R1 |S| = 100m. If the model grid
cells are 10m thick over this part of the ocean, then for the k = 1 grid cell, r = 0.1
and (AI S)k=1 ≈ .025 (AI S). For the k = 9 cell, r = 0.1 and (AI S)k=9 ≈ .975 (AI S).

Neutral

Up

Horizontal

Diffusion

Horizontal
Diffusion

Figure 13.4: The recommended method for orienting the tracer fluxes from the neu-
tral diffusion operator. In the ocean interior, where neutral slopes are modest, the
neutral diffusion fluxes are oriented along neutral directions. In the regions where
neutral slopes are steep, such as in the mixed layer, the diagonal horizontal pieces of
the neutral diffusion operator are maintained, whereas the off-diagonal terms and
vertical flux component is tapered to zero. Combined with the vertical diffusion
operator, the resulting tracer diffusion is oriented in a horizontal-vertical manner
in regions of steep neutral slopes.

In summary, we recommend the following tapering algorithm for neutral diffu-
sion:

• For all neutral slopes regardless the distance of the grid point from the ocean
surface, the diagonal horizontal diffusive terms are maintained without ta-
pering.

• If the slope is steeper than Smax, then the exponential taper (13.11) is applied
to all except the diagonal horizontal terms.

• If the slope is shallow (|S| < Smax) and the grid cell is deeper than R1 |S| from
the surface, then no tapering is applied.

• If the slope is shallow yet the grid cell is shallower than R1 |S| from the sur-
face, than the sine taper (13.23) is applied to all except the horizontal diagonal
terms.

• For the bottom, much remains to be studied. A reasonable and popular ap-
proach is to transition to an along-topography diffusion scheme such as that
proposed by and Beckmann and Döscher (1997) and Döscher and Beckmann
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(1999). More sophisticated bottom boundary layer schemes are at the cutting-
edge of current research, with comments and references provided in the Griffies
et al. (2000a) review paper.

13.3.4.3 Suggestions for GM

As described by Send and Marshall (1995), Visbeck et al. (1996), and Haine and
Marshall (1998), baroclinic eddies are active near deep convective regions as well
as more shallow surface boundary layers, both of which have steep neutral slopes.
Consequently, mesoscale eddies provide a tendency to adiabatically flux density
laterally and vertically as they extract the large store of available potential energy
in the strongly baroclinic regions. One may thus choose to maintain a nontrivial
GM flux in these regions to parameterize this process in coarse resolution models.

To motivate the form of this flux, we focus here on issues critical to the surface
boundary layer. In particular, we consider a region of the upper ocean with ver-
tical neutral directions, and ignore for now the near-boundary discussion in Sec-
tion 13.3.3. If we set the product of GM diffusivity and slope to its saturated value
(κ S)max within a column of cells with steeply sloping neutral directions, as allowed
by numerical stability (see Section 13.2), then there is zero horizontal eddy-induced
velocity (equation (12.56)) since u∗ = −∂z (κ S)max = 0. The vertical velocity com-
ponent w∗ = ∇z · (κ S)max is vertically constant and generally nonzero.

However, since all vertical components of the neutral physics fluxes vanish at
the ocean top (see Figure 13.2), as noted by Gent et al. (1995), the vertical eddy-
induced velocity must transition from a vertically constant value at the bottom of
the surface grid cell to zero at the grid cell’s top. This rapid transition induces a
large horizontal velocity u∗ within the surface grid cell needed to satisfy continu-
ity. As the thickness of the surface grid cell becomes smaller via grid cell refinement
or free surface height undulations (see Figure 10.1), the transition region becomes
thinner and so induces a larger jump in eddy-induced velocity across the surface
grid cell, ultimately becoming a delta function in the limit similar to that discussed
by Bretherton (1966), Killworth (1997), and Killworth (2001). The left panel of Fig-
ure 13.5 illustrates this point.

A numerically robust approach capturing the horizontal eddy-induced trans-
port is to let the product κ S linearly move from its saturated value (κ S)max at the
base of the boundary layer, to zero at the top of the surface grid cell. This ap-
proach was suggested by Treguier et al. (1997) and Greatbatch and Li (2000). In this
way, the horizontal eddy-velocity u∗ is vertically constant throughout the bound-
ary layer with a magnitude inversely proportional to the boundary layer depth.
The vertical velocity w∗ also smoothly goes to zero at the surface. The right panel
of Figure 13.5 illustrates this choice. Mathematically, this choice leads to the GM
flux in steep sloped regions

|S| >> Smax ⇒







F(h) = (κ S)linear taper C,z

F(z) = −(κ S)linear taper · ∇zC.
(13.26)

The subscript “linear taper” symbolizes linear tapering discussed above. Note that
because we have the maximum value of (κ S) at the base of the boundary layer, it is
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here that restratification tendencies from GM are strongest. Finally, the vector char-
acter of (κ S)linear taper signifies that its sign is taken from the sign of the actual
slope. A regularization method for computing slopes whose values approach infin-
ity is given in Section 13.2. Figure 13.6 illustrates the tendency of the corresponding
eddy-induced streamfunction.

Now considering the notions discussed in Section 13.3.3, for shallow sloped re-
gions within a distance R1 |S| of the ocean surface, yet outside of the regions where
the slopes are steeper than Smax, we truncate the GM flux components according to

|S| < Smax and depth < R1 |S| ⇒
{

F(h) = (κ S) Tsine C,z

F(z) = −(κ S) Tsine · ∇zC
(13.27)

where Tsine is the sine-taper function defined by equation (13.23).
In summary, we recommend the following tapering algorithm for GM skew-

sion:

• If a grid point is within the surface boundary layer, defined as that region
starting at the ocean surface where neutral slopes are steeper than Smax, then
letκ S linearly move from its saturated value (κ S)max at the base of the bound-
ary layer, to zero at the top of the surface grid cell. This approach ensures
a vertically constant horizontal eddy-induced velocity within the boundary
layer, and a vertical eddy-induced velocity that linearly decays to zero at the
ocean surface.

• If a grid point is outside the boundary layer, which means the slope is shallow
(|S| < Smax), yet the grid point is shallower than the penetration depth R1 |S|,
then the sine taper (13.23) is applied to all pieces of the GM flux.

• If the slope at a grid point is shallow (|S| < Smax) and the depth is greater
than R1 |S|, then no tapering is applied.
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Figure 13.5: Horizontal eddy-induced velocity resulting from two different treat-
ments of GM in the regions of steep neutral slopes. The right option is preferred
since it leads to a well defined limit as the vertical grid spacing is refined, and
provides for a constant horizontal eddy-velocity throughout the boundary layer
instead of a large velocity just in the surface cell.
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Figure 13.6: The recommended method for handling GM fluxes in regions where
the neutral slope is steep. Shown is a schematic case where the GM flux is non-
zero and oriented in a manner to maintain a nontrivial eddy-induced or quasi-
Stokes streamfunction which moves light water over heavy water, thus slumping
the isopycnals and reducing baroclinicity.
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The purpose of this chapter is to derive the discrete small angle neutral diffusion
operator. This discretization is also of use for discrete Gent and McWilliams (1990)
skewsion according to Griffies (1998). As all details focus on fields defined at the
tracer point, the discussion is generic to z-models with arbitrary grid arrangements.

The presentation introduces grid labels on fields living on a discrete lattice. In
particular, discrete tracer fields in this chapter are denoted by the symbol Ti, j,k,
which is the notation used in the GFDL Modular Ocean Model (MOM). The symbol
C was used in other chapters for tracer concentration. Explicit sums and averages
are also used in most places in this chapter rather than choosing amongst the more
elegant alternatives. We choose this more explicit notation since it leads to less
ambiguity for the reader. Furthermore, such is ultimately required by the numeri-
cist when translating an algorithm into computer code. Experience has shown that
having the algorithm written nearly in its “full glory” in LATEXreduces the chances
for bugs to penetrate the computer code. Such is especially crucial for complicated
schemes such as the one documented in this chapter. Hence, for pedogogical and
“quality control” reasons, we prefer the explicit grid-label notation. Recognizing
that this approach can lead to somewhat lengthy equations, we use a relatively
small font for the remainder of this chapter to allow for visually more compact
expressions.

14.1 Foundations for discrete neutral physics

The purpose of this section is to set the foundations for discretization of the neutral diffu-
sion and skew-diffusion operators.

14.1.1 Dissipation of tracer variance

Diffusive mixing reduces tracer variance. Such can be seen by taking the time derivative of
the variance, assuming a constant volume domain devoid of sources and boundary fluxes,
and focusing on the effects due to mixing by a symmetric and positive semi-definite tensor
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(recall definition of tracer variance from Section 12.5.1)

(V/2)V,t =
∫

dV C C,t

=
∫

dV C (Kmn C,n),m

=
∫

dV (C Kmn C,n),m −
∫

dV C,m Kmn C,n

= −
∫

dV∇ · (C F) +
∫

dV∇C · F, (14.1)

where
Fm = −Kmn C,n (14.2)

is the diffusive tracer flux. The total derivative term can be dropped when there are no
diffusive fluxes normal to the domain boundaries, as assumed here. The second term is
negative semi-definite since diffusive fluxes are down the tracer gradient, or equivalently
the diffusion tensor is positive semi-definite

∇C · F = −C,m Kmn C,n ≤ 0. (14.3)

14.1.2 Functional formalism

The diffusion operator, when acting on a passive tracer, is a linear self-adjoint operator. As
such, it has an associated negative semi-definite functional (e.g., Courant and Hilbert (1953,
1962)). For example, the Laplacian operator∇2C is identified with the functional derivative
∇2C = δF/δC, where F ≡ −(1/2)

∫

|∇C|2dV is the associated functional. We derive this
result in the general case in this section.

14.1.2.1 Dissipation functional

For a general diffusion operator, the dissipation functional is written

F =
∫

dxL, (14.4)

where the non-positive integrand is given by

2L = F · ∇C = −C,m Kmn C,n (14.5)

and it is convenient to write the volume element as dV = dx. The name dissipation is
attached to the functionalF due to its relation to the dissipation of tracer variance described
in the previous section

F =
V
4
V,t. (14.6)

Hence, properties of a discrete realization of the functional F are shared by evolution of
the discrete tracer variance.

14.1.2.2 Functional derivative

We now illustrate the connection between the functional derivative of F and the diffusion
operator

R(C) = −∇ · F(C). (14.7)

For this purpose, consider functional variations of the tracer field δC, thus leading to vari-
ations in the functional given by

δF =
∫

dx
(

δL
δC

δC +
δL
δC,m

δC,m

)

. (14.8)
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Integration by parts leads to

δF =
∫

dx
(

δL
δC

δC + ∂m

(

δL
δC,m

δC
)

− ∂m

(

δL
δC,m

)

δC
)

. (14.9)

The second term is a total derivative that integrates to a surface term. Assuming the tracer
field satisfies natural boundary conditions, whereby

n̂ · δL
δ∇C

= 0 (14.10)

with n̂ an outward normal at boundaries, allows for the variation to be written

δF =
∫

dx
(

δL
δC
− ∂m

(

δL
δC,m

))

δC. (14.11)

Consequently, the functional derivative is given by

(dy)−1 δF
δC(y)

=
δL
δC
− ∂m

(

δL
δC,m

)

, (14.12)

where dy is the volume element at the field point y. To reach the last step, it was necessary
to use the identity

δC(x)
δC(y)

= dy δ(x− y), (14.13)

where δ(x− y) is the Dirac delta-function satisfying

∫

dy δ(x− y) = 1, (14.14)

so long as the integration range includes the singular point x = y. Note that by definition,
the delta-function has physical dimensions of inverse volume L−3

We now reintroduce the specific form of the diffusion integrand

2L = −C,m Kmn C,n, (14.15)

thus leading to

(dy)−1 δF
δC(y)

= −∂m

(

δL
δC,m

)

= −∂m (Kmn C,n). (14.16)

The right hand side is identified as the diffusion operator, thus leading to the general result

(dy)−1 δF
δC(y)

= R(C(y)). (14.17)

Natural boundary conditions are maintained by tracer fluxes satisfying the usual no-normal
flux boundary condition

n̂ · F = 0, (14.18)

with
δL
δ∇C

= F(C). (14.19)

Thus completes the connection between the dissipation functional, the diffusion fluxes, and
the diffusion operator.
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14.1.2.3 Approach on the discrete lattice

On the discrete lattice, not every consistent∗ discrete diffusion operator corresponds to a
negative semi-definite discrete functional. Therefore, a consistent numerical diffusion op-
erator does not necessarily possess the dissipative properties of the continuum operator.
For the Laplacian operator in an isotropic media, it is trivial to produce a dissipative nu-
merical operator. In the anisotropic case, such as neutral diffusion, it is nontrivial. Indeed,
the original discretization of the neutral diffusion operator in the GFDL model (Cox (1987))
is numerically consistent but not always dissipative. Griffies et al. (1998) provide examples.

The traditional method of discretization in ocean modeling is to first discretize a partic-
ular operator and then to hope that it satisfies certain global properties present in the con-
tinuum. The alternative approach used here is to first discretize the dissipation functional,
which is a global object of interest. Thereafter, the discrete version of the functional deriva-
tive is taken, which then produces the discrete diffusion operator local to a grid point. This
approach ensures that the discretized diffusion operator dissipates tracer variance.

14.1.3 Neutral directions

Within the functional framework, provision is made for a discretization of the diffusive
fluxes that are aligned according to a self-consistent approximation to the neutral directions.
Self-consistency means that there is a zero neutral diffusive flux of locally referenced poten-
tial density. As shown in Section 12.1.6, a zero neutral flux of locally referenced potential
density implies a balance between the neutral direction diffusive flux of potential tempera-
ture and salinity

αF(θ) = βF(s), (14.20)

where

α = −1
ρ

(

∂ρ
∂θ

)

s,p
(14.21)

and

β =
1
ρ

(

∂ρ
∂s

)

θ,p
(14.22)

are the thermal expansion and saline contracion coefficients introduced in Section 11.6.1. In
order to ensure this balance in a z-coordinate ocean model, it is sufficient to compute the
density gradients in terms of the active tracer gradients and the thermal and saline coeffi-
cients. Special care must be taken when choosing the reference points for evaluating these
gradients, with details given in Section 14.5.2. Without a self-consistent discretization that
guarantees a zero flux of locally referenced potential density, the neutral diffusion operator
can produce grid noise even if it ensures variance does not increase (Griffies et al. (1998)).

14.1.4 Active and passive tracers

When diffusing passive tracers, the neutral diffusion operator is linear since the diffusion
tensor is independent of the passive tracer fields. However, when diffusing the active trac-
ers potential temperature and salinity, the neutral diffusion operator is nonlinear since the
diffusion tensor is itself a function of the active tracers. Since the functional formalism
assumes the diffusion operator to be a linear self-adjoint operator, one may question the
validity of using this formalism for the active tracers.

However, there is no problem applying the formalism since the diffusion operator is
structurally the same for both the active and passive tracers. What is done is to use the
functional machinery assuming the tracer is passive. Yet when it comes time to discretize

∗Consistent here means that the discretization reduces to the correct continuum operator as the
grid size goes to zero.
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the neutral directions, the understanding of how to properly align the slopes so that the
diffusion operator is self-consistent (i.e., so that it does not flux locally referenced potential
density along the neutral directions) is incorporated.

14.1.5 Dissipation functional for neutral diffusion

Here we record the dissipative functional in the continuum for neutral diffusion using both
the full Redi diffusion tensor and the small slope approximation. Note that only the small
slope diffusion tensor is discretized in z-coordinate ocean climate models.

14.1.5.1 Full Redi diffusion tensor

As discussed in Sections 11.6.3 and 12.1, it is possible to write the Redi diffusion tensor
representing along and across neutral diffusion in the projection operator form

Kmn = AI(δmn − ρ̂mρ̂n) + ADρ̂
mρ̂n

= (AI − AD)(δmn − ρ̂mρ̂n) + ADδ
mn (14.23)

with δmn the Kronecker delta and

ρ̂ =
∇ρ
|∇ρ| =

−α∇θ+β∇s
| −α∇θ+β∇s| (14.24)

the unit vector normal to the neutral direction. The diffusivities AI and AD are non-
negative and can in general be functions of space-time. As shown in Section 11.6.3, the
neutral piece of the diffusion tensor projects a vector onto the local neutral direction, and
the dianeutral piece projects a vector into the local normal direction.

Given this diffusion tensor, the functional for neutral diffusion is written

2F = −
∫

dV (AI − AD)
|∇ρ ∧∇C|2
|∇ρ|2 −

∫

dV AD|∇C|2, (14.25)

or more explicitly,

2F =−
∫

dV (AI − AD)
(C,xρ,y − C,yρ,x)2 + (C,yρ,z − C,zρ,y)2 + (C,zρ,x − C,xρ,z)2

ρ2
,x + ρ2

,y + ρ2
,z

−
∫

dV AD(C2
,x + C2

,y + C2
,z). (14.26)

Hence, the diffusive flux is given by

F =
δL
δ∇C

= −(AI − AD)(ρ̂ ∧∇C) ∧ ρ̂− AD∇C. (14.27)

The first term vanishes when the tracer is parallel to the neutral directions. For most
oceanographic cases, the difference AI − AD ≈ AI to many orders of accuracy. Note the
presence of ADC,x and ADC,y in the full tensor. In the case of very steep neutral direc-
tions, these terms become relevant. However, as discussed in Section 12.1.4, such regions
possess mostly three-dimensionally turbulent processes, where a neutral formalism in less
physically relevant.

14.1.5.2 Small angle diffusion tensor

As discussed in Section 12.1.4, the small slope approximation amounts to taking the limit
of |ρ,x|, |ρ,y| << |ρ,z|, and dropping terms of order slope ∗ (AD/AI), with slope the small
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neutral slope. The resulting functional is

2F small = −
∫

dV AI
(C,xρ,z − C,zρ,x)2 + (C,yρ,z − C,zρ,y)2

ρ2
,z

−
∫

dV AD(C,z)2

= −
∫

dV AI (∇zC + S C,z)2 −
∫

dV AD(C,z)2 (14.28)

where S is the neutral slope vector. The corresponding diffusive flux is given by

F =
δL
δ∇C

= −
(

AI
ρ,z

)

(∇ρ ∧∇C) ∧ ẑ− ẑ AD C,z (14.29)

which has components

F(h) = −AI (∇zC + SC,z) (14.30)

Fz = S · F(h) − ADC,z = −AI(S · ∇zC + S2 C,z)− ADC,z (14.31)

As for the full tensor, the AI term in these expressions vanishes when the tracer is parallel
to the neutral directions.

14.2 Introduction to the discretization

The remainder of this chapter focuses on the small angle neutral diffusion operator, and
the associated skew fluxes arising from Gent and McWilliams (1990) (GM in the following).
Pacanowski and Griffies (1999) also presented a discretization of the full neutral diffusion
tensor. For reasons stated earlier (Section 12.1.4), the small angle diffusion tensor is suffi-
cient for all ocean-climate modeling purposes with z-models, and so discretization of the
full tensor of Redi (1982) is not discussed here.

14.2.1 Summary and Caveats

As documented by Griffies et al. (1998), the discrete neutral diffusion operator described in
this chapter does the following:

1. It produces a zero horizontal flux of locally referenced potential density as embodied
by the balance given in equation (12.32). The Cox (1987) scheme did not respect this
property, and this problem led to the nonlinear numerical instability of that scheme.

2. It reduces tracer variance, and produces downgradient oriented tracer fluxes along
neutral directions when considering a particular finite volume region of the discrete
lattice.

3. It computes a second order approximation to the neutral slopes.

4. It requires zero background horizontal diffusion to remain numerically stable; the
Cox (1987) scheme blew-up without this diffusion.

Some limitations of the discrete neutral diffusion operator include the following:

1. Because part of the vertical flux is computed explicitly in time and part implicitly,
the balance between the vertical component of the neutral diffusive salinity and tem-
perature fluxes (equation (12.32)) is slightly broken. This problem has proven to be
minor in realistic settings, though it is useful to keep in mind.

2. Because it only guarantees downgradient oriented tracer fluxes over finite volumes,
rather than individual tracer cells, tracers can move outside their physically con-
strained range. Consequently, the scheme does not guarantee positive-definiteness
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of tracers. This problem appears most pernicious for passive tracers in steep sloped
regions. The temperature and salinity, being constrained by the need to produce
a zero flux of locally referenced potential density, appear less problematic, though
they too can move outside physical bounds. In order to do the pure neutral diffu-
sion problem for all slopes, it appears necessary to employ a positive-definite neutral
diffusion scheme. Proposals are discussed by Beckers et al. (2000).
As argued in Chapter 13 (see especially Section 13.3), it is physically justifiable to
apply horizontal fluxes in regions where neutral slopes are steep. In this case, the
numerical issues appearing in such regions become less problematic.

3. The discrete neutral diffusion scheme requires no horizontal background diffusion
previously required with the Cox (1987) scheme. Unfortunately, removing horizontal
diffusion exposes the simulations to problems with dispersive advection schemes.
These problems are most apparent next to topography in regions where the tracers
are aligned with neutral directions, and so diffusive fluxes are weak. This “Peclet
grid noise” problem is fundamental to dispersive advection schemes, and it further
prompts the use of horizontal diffusion next to boundary layers. Another means
for removing these problems is to use the sigma diffusion scheme of Beckmann and
Döscher (1997) and Döscher and Beckmann (1999), which is a rudimentary scheme
aiming to move dense water down slopes.

14.2.2 General procedure for discretization

Motivated from the discussion in Section 14.1.2, discretization of the diffusion operator at
a particular grid point is derived from the functional derivative of the discretized neutral
diffusion functional F [T]. On a discrete lattice, the functional derivative becomes a partial
derivative

R(T)i, j,k =
1

VTi, j,k

∂F [Ti, j,k]
∂Ti, j,k

, (14.32)

where
VTi, j,k = dxti, j dyti, j dhti, j,k (14.33)

is the volume of the tracer cell (T-cell). This result corresponds to a discrete version of the
continuum relation given by equation (14.17).

The general procedure for discretization is to identify those pieces of the discretized
functional that contain contributions from the discretized tracer value Ti, j,k. These are the
pieces possessing nonzero functional derivatives, and so contribute to the diffusion opera-
tor for this T-cell. An enumeration of these pieces depends on the particular discretization
of the functional. Most models choose second order numerics. Higher order numerics do
not appear to be motivated for an operator aiming to dissipate via mixing. One overrid-
ing principle used to guide this discretization is to recover the familiar discretization of the
Laplacian in the case of zero neutral slopes, where neutral diffusion reduces to horizontal
diffusion.

All details about the discretization are made at the level of the functional. These de-
tails include the particular grid choice and the choice for reference points to be used in
approximating the neutral directions.

14.2.3 Some conventions

To reduce clutter, no reference is made to the time step. As it is necessary to lag the time
step for numerical stability of the diffusion equation (e.g., Haltiner and Williams (1980)), a
time step of τ − 1 is assumed throughout.

It is sufficient to work through details for the two-dimensional x-z plane. Generaliza-
tion to the three dimensional case is straightforward and will be made at the end.
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14.3 A one-dimensional warm-up

In order to illustrate the general framework provided by the functional approach, it is use-
ful to consider the case of one-dimensional diffusion along the zonal direction. Neutral
diffusion does not exist in one-dimension, so this example cannot illustrate any of the sub-
tle issues related to discretization of the neutral directions. The issues of partial vertical
cells are also avoided here and will be addressed later.

Figure 14.1 shows the zonal grid. The grid is partitioned into four subcells called quarter
cells in the following, with each possessing a generally different diffusivity A(n) and length
V(n) (generalized to volume in the three-dimensional case). The quarter cells each contain
a contribution from the central tracer point Ti upon discretizing the functional with second
order numerics. That is, we consider a second order discretization of the functional

F = −1
2 ∑

i
∑
n

A(n)V(n)(δxT(n))2, (14.34)

where the n sum is over the subcells relevant for each T-cell. The four terms containing a
contribution from Ti are given by

2F [Ti] = −A(1)V(1)(δxTi−1)2 − A(2)V(2)(δxTi−1)2

− A(3)V(3)(δxTi)2 − A(4)V(4)(δxTi)2, (14.35)

where the tracer derivative is assumed to be the same for the two subcells 1 and 2 and the
two subcells 3 and 4. The “volumes” of the subcells are

V(1) = dtei−1 (14.36)
V(2) = dtwi (14.37)
V(3) = dtei (14.38)
V(4) = dtwi+1 (14.39)

and the derivatives are

δxTi−1 =
Ti − Ti−1

dxtei−1
(14.40)

δxTi =
Ti+1 − Ti

dxtei
. (14.41)

Taking the derivative of the functional with respect to Ti leads to

−2
∂F
∂Ti

=
δxTi−1

dxtei−1
(A(1) V(1) + A(2) V(2))− δxTi

dxtei
(A(3) V(3) + A(4) V(4))

=
δxTi−1

dxtei−1
(A(1) dtei−1 + A(2) dtwi)−

δxTi
dxtei

(A(3) dtei + A(4) dtwi+1) . (14.42)

Defining a distance weighted average diffusivity

A(1) dtei−1 + A(2) dtwi = 2
(

dtx A
x
)

i−1
(14.43)

A(3) dtei + A(4) dtwi+1 = 2
(

dtx A
x
)

i
(14.44)

leads to

∂F
∂Ti

= dxti δx







(

dtx A
x
)

i−1
dxtei−1

δxTi−1





 (14.45)
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and to the diffusion operator

R(T)i =
1

dxti

∂F
∂Ti

= δx







(

dtx A
x
)

i−1
dxtei−1

δxTi−1





 . (14.46)

Note that for a constant grid with a constant diffusivity, this discretization reduces to the
standard 3-point discrete one-dimensional Laplacian.

The main points to be taken from this example are the following:

1. We assumed that the tracer gradient is the same across the two adjacent subcells 1 &
2 and 3 & 4, respectively.

2. The grid weighted average operator naturally appeared.

3. We introduced a diffusion coefficient associated with a quarter tracer cell as opposed
to a full tracer cell.

The assumption about tracer gradients across subcells is necessary to have the function-
ally derived discretization reduce to the traditional 3-point Laplacian when the grid and
diffusivity are constant.

T(i-1) T(i)(1) (2) (3) (4)

dxte(i-1) dxte(i)
U(i-1) U(i)

dxt(i) dxt(i+1)

dtw(i) dte(i)

T(i+1)

Figure 14.1: One dimensional zonal grid with quarter cells (1), (2), (3), (4). The
quarter cells are bounded by their adjacent velocity and tracer points: quarter cell
(1) is bounded by Ti−1 and Ui−1, quarter cell (2) by Ui−1 and Ti, quarter cell (3)
by Ti and Ui, and quarter cell (4) by Ti+1 and Ui+1. The dimension of a tracer cell
is dxti, velocity points live on the boundary of tracer cells, the distance between
tracer points Ti and Ti+1 is dxtei, the distance from the tracer point Ti to the western
boundary of the tracer cell is dtwi, and the distance to the eastern boundary is dtei.

14.4 Elements of the discrete functional

This section details the basic elements of the discrete neutral diffusion functional. It is
here that we consider issues regarding the three-dimensional lattice, including the bottom
partial cells of Adcroft et al. (1997) and Pacanowski and Gnanadesikan (1998) commonly
used in z-models to represent topography.

14.4.1 Grid partitioning for the small angle functional

Use of the small angle functional given by Equation (14.28) motivates a discretization which
projects separately onto the two planar slices x-z and y-z. Discretization of the dianeutral
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term AD(T,z)2 can be done using the one-dimensional warm-up formalism just discussed,
and so is ignored in the following.∗

Figure 14.2 shows the projection for the x-z plane. Within a plane, the central T-cell is
partitioned into 4 generally non-equal squares, with one corner being the T-point and the
other corners being the corners of the T-cell. Shown here are cells next to the partial cell
bottom.

1 2

3 47

8

9 10 

11 12

6

5

Ti-1,k-1 Ti,k-1 Ti+1,k-1

Ti+1,k

Ti,k

Ti-1,k

zw(i+1,k)

ztp(i+1,k)

Figure 14.2: The x-z plane for the case with partial bottom cells. T-cells are sur-
rounded by dark solid lines. Rock is shaded gray. Thin and thick solid lines define
the quarter cells. The vertical position of a T-point within a T-cell maintains the
same ratio for all the cells, whether full or partial. 12 quarter cells are shown, and
these correspond to the cells where Ti. j,k contributes to the functional. Note that
quarter-cells 11 and 12 are in rock for this particular example. The vertical dis-
tances from the ocean surface to the bottom of the T-cells (zw) and to the T-cell
center (ztp) are shown by lines with arrows. Note that the field zwi, j,k is actually
one-dimensional in MOM4, but its full three-dimensional structure can be deduced
from other information in the model.

14.4.2 Vertical grid dimensions with partial cells

The following fields define the thickness of partial cells

dhti, j,k = zwi, j,k − zwi, j,k−1 (14.47)

dhwti, j,k−1 = ztpi, j,k − ztpi, j,k−1. (14.48)

∗Although providing a useful discretization of the one-dimensional diffusion equation, the func-
tional approach from Section 14.3 is not commonly employed in z-models for vertical diffusion. The
reason is that vertical diffusivities are often computed on the cell-faces and are not considered equal
across a quarter cell.
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The field zwi, j,k defines the vertical distance from the ocean surface to the bottom of T-cell
Ti, j,k. The field ztpi, j,k defines the vertical distance from the ocean surface to the T-cell point
Ti, j,k. The grid dimension dhti, j,k measures the vertical thickness of the T-cell Ti, j,k, whereas
dhwti, j,k−1 measures the vertical distance between the grid points Ti, j,k and Ti, j,k−1.

Inspection of Figure 14.2 indicates that in order to construct the volume of the quarter
cells, it is necessary to take vertical differences such as zwi, j,k − ztpi, j,k (vertical dimension
of quarter-cells 3 and 4), and zti, j,k − zwi,k−1, j (vertical dimension of quarter-cells 1 and 2).
It will therefore prove useful to define the following field

δ
(i, j,k1)
(i, j,k2) = (−1)k1−k2(zwi, j,k1 − zti, j,k2). (14.49)

Explicitly, for example,

δ
i, j,k−1+kr
i, j,k =

{

(zti, j,k − zwi, j,k−1) if kr = 0
(zwi, j,k − zti, j,k) if kr = 1 (14.50)

and

δ
i, j,k
i, j,k+kr =

{

(zwi, j,k − zti, j,k) if kr = 0
(zti, j,k+1 − zwi, j,k) if kr = 1. (14.51)

Note that in Pacanowski and Griffies (1999), an extra multiplicative factor of 2 was used to
facilitate easier comparison with full bottom cell results given in Griffies et al. (1998). This
factor cancels out later and so is not exposed here.

14.4.3 Horizontal tracer gradients and the minimum thickness rule

With partial bottom cells, tracers in horizontally adjacent grid cells generally live at differ-
ent depths. Before taking horizontal gradients between these tracers, linear interpolation
is used to approximate the deeper tracer as if it actually lived at the depth of the shallower
tracer point. For example, when taking a horizontal derivative between points Ti, j,k and
Ti+1, j,k shown in Figure 14.2, the value of Ti+1, j,k is approximated by a linear interpola-
tion to the same depth as Ti, j,k. The method and motivation for this interpolation is de-
scribed in Section 26.2.3 of Pacanowski and Griffies (1999) as well as the partial cell paper
of Pacanowski and Gnanadesikan (1998).

The interpolation generally is an interpolation to the minimum depth between two lat-
erally adjacent tracer cells. Hence, it effectively reduces the vertical spacing of quarter cell
5 to that of quarter cell 2. A similar consideration applies between quarter cells 7 and 1, for
which the vertical spacing for quarter cell 7 is effectively the same as the smaller vertical
spacing in quarter cell 1. With this prescription for determining the horizontal gradients
and grid cell volumes, the discrete neutral diffusion scheme is compatible with the hor-
izontal diffusion scheme described in Section 26.2.3 of Pacanowski and Griffies (1999) as
well as the partial cell paper of Pacanowski and Gnanadesikan (1998).

In general, the above minimum thickness rule implies that it is sufficient to only explicitly
denote the vertical height of the quarter cells living in the eastern and northern halves,
say, of a particular T-cell. Such is the case for full vertical cells as well, in which the vertical
height is a function only of the vertical grid position. Therefore, the only difference between
the volume specification for the partial cells and the full cells is that for the partial cells, it
is necessary to introduce the minimum operation.

With this minimum thickness rule, the vertical spacing relevant for defining the x-z plane
quarter cell volumes is written

∆
(i, j,k1)
(i, j,k2) = min

(

δ
(i, j,k1)
(i, j,k2) , δ(i+1, j,k1)

(i+1, j,k2)

)

. (14.52)

Likewise, the vertical spacing relevant for defining the y-z plane quarter cell volumes is
written

∆
(i, j,k1)
(i, j,k2) = min

(

δ
(i, j,k1)
(i, j,k2) , δ(i, j+1,k1)

(i, j+1,k2)

)

. (14.53)
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Explicitly, the vertical spacings for the 12 x-z plane quarter cells in Figure 14.2 are given
by (dropping the j label for brevity)

δ(1) = (zti,k − zwi,k−1) = δi,k−1
i,k

δ(2) = (zti,k − zwi,k−1) = δi,k−1
i,k

δ(3) = (zwi,k − zti,k) = δi,k
i,k

δ(4) = (zwi,k − zti,k) = δi,k
i,k

δ(5) = (zti+1,k − zwi+1,k−1) = δi+1,k−1
i+1,k

δ(6) = (zwi+1,k − zti+1,k) = δi+1,k
i+1,k

δ(7) = (zti−1,k − zwi−1,k−1) = δi−1,k−1
i−1,k

δ(8) = (zwi−1,k − zti−1,k) = δi−1,k
i−1,k

δ(9) = (zwi,k−1 − zti,k−1) = δi,k−1
i,k−1

δ(10) = (zwi,k−1 − zti,k−1) = δi,k−1
i,k−1

δ(11) = (zti,k+1 − zwi,k) = δi,k
i,k+1

δ(12) = (zti,k+1 − zwi,k) = δi,k
i,k+1,

(14.54)

whereas the vertical spacing used to compute the volumes of these quarter cells is given by

∆(1) = min
(

δi−1,k−1
i−1,k , δi,k−1

i,k

)

= ∆
(i−1,k−1)
(i−1,k)

∆(2) = min
(

δi,k−1
i,k , δi+1,k−1

i+1,k

)

= ∆
(i,k−1)
(i,k)

∆(3) = min
(

δi−1,k
i−1,k , δi,k

i,k

)

= ∆
(i−1,k)
(i−1,k)

∆(4) = min
(

δi,k
i,k , δi+1,k

i+1,k

)

= ∆
(i,k)
(i,k)

∆(5) = min
(

δi,k−1
i,k , δi+1,k−1

i+1,k

)

= ∆
(i,k−1)
(i,k)

∆(6) = min
(

δi,k
i,k , δi+1,k

i+1,k

)

= ∆
(i,k)
(i,k)

∆(7) = min
(

δi−1,k−1
i−1,k , δi,k−1

i,k

)

= ∆
(i−1,k−1)
(i−1,k)

∆(8) = min
(

δi−1,k
i−1,k , δi,k

i,k

)

= ∆
(i−1,k)
(i−1,k)

∆(9) = min
(

δi−1,k−1
i−1,k−1 , δi,k−1

i,k−1

)

= ∆
(i−1,k−1)
(i−1,k−1)

∆(10) = min
(

δi,k−1
i,k−1 , δi+1,k−1

i+1,k−1

)

= ∆
(i,k−1)
(i,k−1)

∆(11) = min
(

δi−1,k
i−1,k+1, δi,k

i,k+1

)

= ∆
(i−1,k)
(i−1,k+1)

∆(12) = min
(

δi,k
i,k+1, δi+1,k

i+1,k+1

)

= ∆
(i,k)
(i,k+1).

(14.55)

14.4.4 Quarter cell volumes

In order to discretize the functional, it is necessary to construct the volumes V(n) of the var-
ious subcells which partition the grid into the quarter-cells shown in Figure 14.2. Referring
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to Figure 14.2 yields volumes for the 12 quarter cells

V(1) = dtwi, j dyti, j ∆
(i−1,k−1)
(i−1,k)

V(2) = dtei, j dyti, j ∆
(i,k−1)
(i,k)

V(3) = dtwi, j dyti, j ∆
(i−1,k)
(i−1,k)

V(4) = dtei, j dyti, j ∆
(i,k)
(i,k)

V(5) = dtwi+1, j dyti+1, j ∆
(i,k−1)
(i,k)

V(6) = dtwi+1, j dyti+1, j ∆
(i,k)
(i,k)

V(7) = dtei−1, j dyti−1, j ∆
(i−1,k−1)
(i−1,k)

V(8) = dtei−1, j dyti−1, j ∆
(i−1,k)
(i−1,k)

V(9) = dtwi, j dyti, j ∆
(i−1,k−1)
(i−1,k−1)

V(10) = dtei, j dyti, j ∆
(i,k−1)
(i,k−1)

V(11) = dtwi, j dyti, j ∆
(i−1,k)
(i−1,k+1)

V(12) = dtei, j dyti, j ∆
(i,k)
(i,k+1).

(14.56)

The j label has been omitted in the ∆ expressions for purposes of brevity. The distance
dtwi, j represents the distance from the point Ti, j,k to the western boundary of the tracer cell,
whereas dtei, j is the distance to the eastern boundary. All grid distances are in meters, and
have the appropriate non-Euclidean metric or stretching functions absorbed according to
the discussion in Section 19.12.4.

14.4.5 Tracer gradients within the quarter cells

Tracer and density gradients are required within the quarter cells. The second order accu-
rate difference operators are given here. There are further details regarding the reference
points to be used in determining the density gradient, and these reference point issues are
discussed in Section 14.5.2. The difference operators approximating derivatives are written

δxTi, j,k =
Ti+1,k, j − Ti, j,k

dxtei, j

δyTi, j,k =
Ti, j+1,k − Ti, j,k

dytni, j

δzTi, j,k =
Ti, j,k − Ti, j,k+1

dhwti, j,k
.

(14.57)

The distance dxtei, j is the zonal distance between Ti+1,k, j and Ti, j,k, the distance dytni, j is
the meridional distance between Ti, j+1,k and Ti, j,k, and the distance dhwti, j,k is the vertical
distance between Ti, j,k and Ti, j,k+1.

The difference operators are located at the T-cell faces and provide second order accu-
rate approximations to the continuous derivatives. For partial cells, horizontal gradients
are computed according to the minimum thickness rule and the associated linear interpo-
lation described in Section 14.4.3. For brevity, such interpolation is assumed in the notation
here; i.e., each horizontal derivative next to the bottom is computed using this interpolation
algorithm.
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Suppressing the j-index for brevity leads to the tracer gradient in the 12 quarter cells

∇T(1) = x̂ δxTi−1,k + ŷ δyTi,k + ẑ δzTi,k−1

∇T(2) = x̂ δxTi,k + ŷ δyTi,k + ẑ δzTi,k−1

∇T(3) = x̂ δxTi−1,k + ŷ δyTi,k + ẑ δzTi,k

∇T(4) = x̂ δxTi,k + ŷ δyTi,k + ẑ δzTi,k

∇T(5) = x̂ δxTi,k + ŷ δyTi+1,k + ẑ δzTi+1,k−1

∇T(6) = x̂ δxTi,k + ŷ δyTi+1,k + ẑ δzTi+1,k

∇T(7) = x̂ δxTi−1,k + ŷ δyTi−1,k + ẑ δzTi−1,k−1

∇T(8) = x̂ δxTi−1,k + ŷ δyTi−1,k + ẑ δzTi−1,k

∇T(9) = x̂ δxTi−1,k−1 + ŷ δyTi,k−1 + ẑ δzTi,k−1

∇T(10) = x̂ δxTi,k−1 + ŷ δyTi,k−1 + ẑ δzTi,k−1

∇T(11) = x̂ δxTi−1,k+1 + ŷ δyTi,k+1 + ẑ δzTi,k

∇T(12) = x̂ δxTi,k+1 + ŷ δyTi,k+1 + ẑ δzTi,k

(14.58)

and the functional derivative of these x-z plane gradients is given by

∂∇T(1)
∂Ti, j

=
x̂

dxtei−1, j
− ŷ

dytni, j
− ẑ

dhwti, j,k−1

∂∇T(2)
∂Ti,k

= − x̂
dxtei, j

− ŷ
dytni, j

− ẑ
dhwti,k−1, j

∂∇T(3)
∂Ti,k

=
x̂

dxtei−1, j
− ŷ

dytni, j
+

ẑ
dhwti,k, j

∂∇T(4)
∂Ti,k

= − x̂
dxtei, j

− ŷ
dytni, j

+
ẑ

dhwti,k, j

∂∇T(5)
∂Ti,k

= − x̂
dxtei, j

∂∇T(6)
∂Ti,k

= − x̂
dxtei, j

∂∇T(7)
∂Ti,k

=
x̂

dxtei−1, j

∂∇T(8)
∂Ti,k

=
x̂

dxtei−1, j

∂∇T(9)
∂Ti,k

= − ẑ
dhwti,k−1, j

∂∇T(10)
∂Ti,k

= − ẑ
dhwti,k−1, j

∂∇T(11)
∂Ti,k

=
ẑ

dhwti,k, j

∂∇T(12)
∂Ti,k

=
ẑ

dhwti,k, j
.

(14.59)

14.4.6 Schematic form of the discretized functional

For each of the two vertical planes x-z and y-z, there are 12 components to the functional
that contain contributions from the grid tracer value Ti, j,k. These 12 components correspond
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to the 12 quarter cells shown in Figure 14.2. For example, the x-z plane functional can be
written (see equation (14.28) for continuum version)

F (x−z) = −1
2 ∑

i,k

12

∑
n=1

A(n) V(n) [δxT(n) + S(x)(n) δzT(n)]2 ≡∑
i,k

Li,k (14.60)

where the discretized quadratic form

Li,k = −1
2

12

∑
n=1

A(n) V(n) [δxT(n) + S(x)(n) δzT(n)]2 ≡
12

∑
n=1

L(n)
i,k (14.61)

consists of 12 non-positive contributions, with A(n) the non-negative diffusion coefficient
for each of the different quarter cells.

14.5 Triads and some notation

This section details the methods used to compute the density gradients and the correspond-
ing neutral directions. In the process, we encounter the triad structure of the elements com-
prising the discrete functional.

14.5.1 Tracer and density triads

Consider the component of the x-z plane functional arising from the first subcell (see Figure
14.2), which has the form

L(1)
i,k = −

(

A(1) V(1)
2

)(

δxTi−1,k − δzTi,k−1
δxρi−1,k

δzρi,k−1

)2
. (14.62)

This term has contributions from the tracer and density at the three grid points: Ti−1,k , Ti,k,
and Ti,k−1. These three points form a triangle, or triad, in the x-z plane. All pieces of
the functional are discretized into these triad groups. That is, triads are the fundamental
combinations of tracer and density points within the discrete functional. For each triad there is a
unique quarter cell volume and diffusivity.

14.5.2 Reference points for computing density derivatives

Horizontal and vertical derivatives of density are needed to compute neutral slopes (Sec-
tion 11.6.1). Hence, the density derivatives appearing in the discrete neutral diffusion func-
tional are discretized as finite differences of locally referenced potential density. A self-
consistent choice for the reference point must be chosen. That is, we need to choose a tem-
perature, salinity, and pressure to reference the horizontal and vertical density derivatives.
Given the prominence of the triad structure in the discrete functional, we choose the triad
corner as reference point. Alternatives could be considered, but in practice they likely will
lead to minimal differences from the triad corner. With the corner as the reference point, the
triad forming L(1)

i,k uses the T-cell point Ti, j,k as the reference. This choice is valid whether
the triad is wholly in a full vertical cell region, or has a part within a partial cell. Other
triads use similarly defined reference points.

With the triad corner as reference point, each of the three discrete densities appearing
in a triad employ the same thermal and saline partial derivatives referenced to this single
point. Therefore, the density derivatives appearing in L(1)

i,k are discretized as

δxρi−1, j,k = (ρ,θ)i, j,k δxθi−1, j,k + (ρ,s)i, j,k δxsi−1, j,k ≡ δxρ
(i, j,k)
i−1, j,k (14.63)

δzρi, j,k−1 = (ρ,θ)i, j,k δzθi, j,k−1 + (ρ,s)i, j,k δysi, j,k−1 ≡ δzρ
(i, j,k)
i, j,k−1. (14.64)
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In these expressions, the thermal and saline partial derivatives are

(ρ,θ)i, j,k = (∂ρ/∂θ)
(

θi, j,k , si, j,k , pi, j,k

)

(14.65)

(ρ,s)i, j,k = (∂ρ/∂s)
(

θi, j,k , si, j,k , pi, j,k

)

, (14.66)

where the arguments of the density partial derivatives indicate the value of the potential
temperature, salinity, and pressure reference for use in their computation. The derivatives
ρ,θ and ρ,s are computed analytically and tabulated along with the equation of state (see
Griffies et al. (2003)). The superscripts introduced on the density gradients in equations
(14.63) and (14.64) allow for a compact notation that exposes information about the refer-
ence point. Parentheses are included to help distinguish it from subscripts referring to the
usual grid points.

In an early derivation of the discretized diffusion operator, issues of reference points
were ignored until the very end of the derivation. At that point, reasonable choices were
made for choosing the reference points, which consisted of referencing on the various sides
of the T-cells consistent with the location of the diffusive fluxes. However, it was soon
realized that the numerical constraint of defining a dissipative diffusion operator was not
satisfied by this choice. That is, such choices led to the possibility of a sign indefinite dis-
crete neutral diffusion functional, and this allowed for the corresponding discrete neutral
diffusion operator to increase variance. This point emphasizes the importance of address-
ing all discretization details when discretizing the functional in order to ensure a dissipative
discrete neutral diffusion operator.

14.5.3 Notation for neutral direction slopes and diffusivities

The discretized neutral direction slopes appear throughout the functional, so it is useful to
devise a notation to help reduce the clutter. For this purpose, let

Sx(i,k)
(i1,k1|i2,k2) ≡ −





δxρ
(i,k)
i1,k1

δzρ
(i,k)
i2,k2



 (14.67)

Given this notation and the methods of regularization discussed in Section 13.3, it is also
useful to introduce an associated diffusivity with notation

A(n)→ A(i,k)
(i1,k1|i2,k2). (14.68)

The regularization of A(i,k)
(i1,k1|i2,k2) is determined by the value of Sx(i,k)

(i1,k1|i2,k2) according to
one of the schemes discussed in Section 13.3.

14.5.4 Notation for the quarter-cell dimensions

In the derivative of the x-z functional, we write for the horizontal area of quarter cells living
in adjacent tracer cells

(dtwe dyt)(ip)
i, j =

{

dtwi+1, j dyti+1, j if ip = 1
dtei, j dyti, j if ip = 0 (14.69)

When considering the y-z functional, we require the analogous notation

(dxt dtsn)( jq)
i, j =

{

dxti, j+1 dtsi, j+1 if jq = 1
dxti, j dtni, j if jq = 0. (14.70)
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It is also useful to introduce the following notation for the zonal dimensions of quarter cells
within a tracer cell

dtew(ip)
i, j =

{

dtei, j if ip = 1
dtwi, j if ip = 0 (14.71)

and meridional dimensions

dtns( jq)
i, j =

{

dtni, j if jq = 1
dtsi, j if jq = 0. (14.72)

14.6 The discrete diffusion operator

This section details the construction of the discrete diffusion operator as derived from the
functional derivative of the discrete diffusion functional.

14.6.1 The discretized x-z dissipation functional

The different components of the neutral diffusion functional have now been considered,
and so we now piece things together. We focus on the x-z piece, as y-z plane results are
symmetric. The x-z plane quadratic form contains contributions from the T-point Ti, j,k in
the following 12 terms (j index is suppressed)

L(1)
i,k = −1

2
V(1) A(i,k)

(i−1,k|i,k−1)

(

δxTi−1,k + Sx(i,k)
(i−1,k|i,k−1) δzTi,k−1

)2

L(2)
i,k = −1

2
V(2) A(i,k)

(i,k|i,k−1)

(

δxTi,k + Sx(i,k)
(i,k|i,k−1) δzTi,k−1

)2

L(3)
i,k = −1

2
V(3) A(i,k)

(i−1,k|i,k)

(

δxTi−1,k + Sx(i,k)
(i−1,k|i,k) δzTi,k

)2

L(4)
i,k = −1

2
V(4) A(i,k)

(i,k|i,k)

(

δxTi,k + Sx(i,k)
(i,k|i,k) δzTi,k

)2

L(5)
i,k = −1

2
V(5) A(i+1,k)

(i,k|i+1,k−1)

(

δxTi,k + Sx(i+1,k)
(i,k|i+1,k−1) δzTi+1,k−1

)2

L(6)
i,k = −1

2
V(6) A(i+1,k)

(i,k|i+1,k)

(

δxTi,k + Sx(i+1,k)
(i,k|i+1,k) δzTi+1,k

)2

L(7)
i,k = −1

2
V(7) A(i−1,k)

(i−1,k|i−1,k−1)

(

δxTi−1,k + Sx(i−1,k)
(i−1,k|i−1,k−1) δzTi−1,k−1

)2

L(8)
i,k = −1

2
V(8) A(i−1,k)

(i−1,k|i−1,k)

(

δxTi−1,k + Sx(i−1,k)
(i−1,k|i−1,k) δzTi−1,k

)2

L(9)
i,k = −1

2
V(9) A(i,k−1)

(i−1,k−1|i,k−1)

(

δxTi−1,k−1 + Sx(i,k−1)
(i−1,k−1|i,k−1) δzTi,k−1

)2

L(10)
i,k = −1

2
V(10) A(i,k−1)

(i,k−1|i,k−1)

(

δxTi,k−1 + Sx(i,k−1)
(i,k−1|i,k−1) δzTi,k−1

)2

L(11)
i,k = −1

2
V(11) A(i,k+1)

(i−1,k+1|i,k)

(

δxTi−1,k+1 + Sx(i,k+1)
(i−1,k+1|i,k) δzTi,k

)2

L(12)
i,k = −1

2
V(12) A(i,k+1)

(i,k+1|i,k)

(

δxTi,k+1 + Sx(i,k+1)
(i,k+1|i,k) δzTi,k

)2
.

(14.73)

14.6.2 Derivative of the x-z dissipation functional

To construct the diffusion operator, it is necessary to take the discrete functional derivative
of F according to equation (14.32). When taking this derivative, all terms in F independent
of Ti, j,k drop out. Hence, it is only necessary to consider that part of F including contribu-
tions from Ti, j,k. This fact motivated the focus on just the 12 quarter cells shown in Figure
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14.2. Taking the derivative of the 12 contributions to the functional in the x-z plane yields

∂L(1)
i,k

∂Ti, j,k
= −V(1) A(i,k)

(i−1,k|i,k−1)

(

δxTi−1,k + Sx(i,k)
(i−1,k|i,k−1) δzTi,k−1

)





1
dxtei−1, j

−
Sx(i,k)

(i−1,k|i,k−1)

dhwti,k−1





∂L(2)
i,k

∂Ti, j,k
= −V(2) A(i,k)

(i,k|i,k−1)

(

δxTi,k + Sx(i,k)
(i,k|i,k−1) δzTi,k−1

)



− 1
dxtei, j

−
Sx(i,k)

(i,k|i,k−1)

dhwti,k−1





∂L(3)
i,k

∂Ti, j,k
= −V(3) A(i,k)

(i−1,k|i,k)

(

δxTi−1,k + Sx(i,k)
(i−1,k|i,k) δzTi,k

)





1
dxtei−1, j

+
Sx(i,k)

(i−1,k|i,k)

dhwti,k





∂L(4)
i,k

∂Ti, j,k
= −V(4) A(i,k)

(i,k|i,k)

(

δxTi,k + Sx(i,k)
(i,k|i,k) δzTi,k

)



− 1
dxtei, j

+
Sx(i,k)

(i,k|i,k)

dhwti,k





∂L(5)
i,k

∂Ti, j,k
= −V(5) A(i+1,k)

(i,k|i+1,k−1)

(

δxTi,k + Sx(i+1,k)
(i,k|i+1,k−1) δzTi+1,k−1

)

(

− 1
dxtei, j

)

∂L(6)
i,k

∂Ti, j,k
= −V(6) A(i+1,k)

(i,k|i+1,k)

(

δxTi,k + Sx(i+1,k)
(i,k|i+1,k) δzTi+1,k

)

(

− 1
dxtei, j

)

∂L(7)
i,k

∂Ti, j,k
= −V(7) A(i−1,k)

(i−1,k|i−1,k−1)

(

δxTi−1,k + Sx(i−1,k)
(i−1,k|i−1,k−1) δzTi−1,k−1

)

(

1
dxtei−1, j

)

∂L(8)
i,k

∂Ti, j,k
= −V(8) A(i−1,k)

(i−1,k|i−1,k)

(

δxTi−1,k + Sx(i−1,k)
(i−1,k|i−1,k) δzTi−1,k

)

(

1
dxtei−1, j

)

∂L(9)
i,k

∂Ti, j,k
= −V(9) A(i,k−1)

(i−1,k−1|i,k−1)

(

δxTi−1,k−1 + Sx(i,k−1)
(i−1,k−1|i,k−1) δzTi,k−1

)



−
Sx(i,k−1)

(i−1,k−1|i,k−1)

dhwti,k−1





∂L(10)
i,k

∂Ti, j,k
= −V(10) A(i,k−1)

(i,k−1|i,k−1)

(

δxTi,k−1 + Sx(i,k−1)
(i,k−1|i,k−1) δzTi,k−1

)



−
Sx(i,k−1)

(i,k−1|i,k−1)

dhwti,k−1





∂L(11)
i,k

∂Ti, j,k
= −V(11) A(i,k+1)

(i−1,k+1|i,k)

(

δxTi−1,k+1 + Sx(i,k+1)
(i−1,k+1|i,k) δzTi,k

)





Sx(i,k+1)
(i−1,k+1|i,k)

dhwti,k





∂L(12)
i,k

∂Ti, j,k
= −V(12) A(i,k+1)

(i,k+1|i,k)

(

δxTi,k+1 + Sx(i,k+1)
(i,k+1|i,k) δzTi,k

)





Sx(i,k+1)
(i,k+1|i,k)

dhwti,k





To organize results more compactly, rearrange terms to identify components to the discrete
diffusive flux. For this purpose, consider the three terms from quarter cells 1 + 7 + 9 and
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insert expressions for the volumes given in Section 14.4.4:

1
∂Ti, j,k

(

L(1)
i,k + L(7)

i,k + L(9)
i,k

)

= −





∆
(i−1,k−1)
(i−1,k)

dxtei−1, j



×

(

A(i,k)
(i−1,k|i,k−1) dtwi, j dyti, j (δxTi−1,k + Sx(i,k)

(i−1,k|i,k−1) δzTi,k−1)

+ A(i−1,k)
(i−1,k|i−1,k−1) dtei−1, j dyti−1, j (δxTi−1,k + Sx(i−1,k)

(i−1,k|i−1,k−1) δzTi−1,k−1)
)

+
(dtwi, j dyti, j

dhwti,k−1

)

×
(

∆
(i−1,k−1)
(i−1,k) (A Sx)(i,k)

(i−1,k|i,k−1)(δxTi−1,k + Sx(i,k)
(i−1,k|i,k−1) δzTi,k−1)

+ ∆
(i−1,k−1)
(i−1,k−1) (A Sx)(i,k−1)

(i−1,k−1|i,k−1)(δxTi−1,k−1 + Sx(i,k−1)
(i−1,k−1|i,k−1) δzTi,k−1)

)

(14.74)

To clean up this expression, introduce notation for the quarter-cell area from Section 14.5.4
to render

1
∂Ti, j,k

(

L(1)
i,k + L(7)

i,k + L(9)
i,k

)

= −





∆
(i−1,k−1)
(i−1,k)

dxtei−1, j





1

∑
ip=0

(dtwe dyt)(ip)
(i−1, j) A(i−1+ip,k)

(i−1,k|i−1+ip,k−1)×

(

δxTi−1,k + Sx(i−1+ip,k)
(i−1,k|i−1+ip,k−1) δzTi−1+ip,k−1

)

+
(dtwi, j dyti, j

dhwti,k−1

) 1

∑
kr=0

∆
(i−1,k−1)
(i−1,k−1+kr) (A Sx)(i,k−1+kr)

(i−1,k−1+kr|i,k−1)×
(

δxTi−1,k−1+kr + Sx(i,k−1+kr)
(i−1,k−1+kr|i,k−1) δzTi,k−1)

)

.

(14.75)

Results for the other three combinations of three quarter cells in the x-z plane follow simi-
larly. Thus,

1
∂Ti, j,k

(

L(2)
i,k + L(5)

i,k + L(10)
i,k

)

=





∆
(i,k−1)
(i,k)

dxtei, j





1

∑
ip=0

(dtwe dyt)(ip)
i, j A(i+ip,k)

(i,k|i+ip,k−1)×

(

δxTi,k + Sx(i+ip,k)
(i,k|i+ip,k−1) δzTi+ip,k−1

)

+
(dtei, j dyti, j

dhwti,k−1

) 1

∑
kr=0

∆
(i,k−1)
(i,k−1+kr) (A Sx)(i,k−1+kr)

(i,k−1+kr|i,k−1)×
(

δxTi,k−1+kr + Sx(i,k−1+kr)
(i,k−1+kr|i,k−1) δzTi,k−1)

)

(14.76)
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1
∂Ti, j,k

(

L(3)
i,k + L(8)

i,k + L(11)
i,k

)

= −





∆
(i−1,k)
(i−1,k)

dxtei−1, j





1

∑
ip=0

(dtwe dyt)(ip)
i−1, j A(i−1+ip,k)

(i−1,k|i−1+ip,k)×

(

δxTi−1,k + Sx(i−1+ip,k)
(i−1,k|i−1+ip,k) δzTi−1+ip,k

)

−
(dtwi, j dyti, j

dhwti,k

) 1

∑
kr=0

∆
(i−1,k)
(i−1,k+kr) (A Sx)(i,k+kr)

(i−1,k+kr|i,k)×
(

δxTi−1,k+kr + Sx(i,k+kr)
(i−1,k+kr|i,k) δzTi,k

)

(14.77)

and finally

1
∂Ti, j,k

(

L(4)
i,k + L(6)

i,k + L(12)
i,k

)

=





∆
(i,k)
(i,k)

dxtei, j





1

∑
ip=0

(dtwe dyt)(ip)
i, j A(i+ip,k)

(i,k|i+ip,k)×

(

δxTi,k + δzTi+ip,k Sx(i+ip,k)
(i,k|i+ip,k)

)

−
(dtei, j dyti, j

dhwti,k

) 1

∑
kr=0

∆
(i,k)
(i,k+kr) (A Sx)(i,k+kr)

(i,k+kr|i,k)×
(

δxTi,k+kr + Sx(i,k+kr)
(i,k+kr|i,k) δzTi,k

)

.

(14.78)

Bringing the 12 pieces together leads to the functional derivative

∂F (x−z)

∂Ti, j,k
=

(

1
dxtei, j

)

1

∑
kr=0

∆
(i,k−1+kr)
(i,k)

1

∑
ip=0

(dtwe dyt)(ip)
i, j A(i+ip,k)

(i,k|i+ip,k−1+kr)×

(

δxTi,k + Sx(i+ip,k)
(i,k|i+ip,k−1+kr) δzTi+ip,k−1+kr

)

−
(

1
dxtei−1, j

)

1

∑
kr=0

∆
(i−1,k−1+kr)
(i−1,k)

1

∑
ip=0

(dtwe dyt)(ip)
i−1, j A(i−1+ip,k)

(i−1,k|i−1+ip,k−1+kr)×

(

δxTi−1,k + Sx(i−1+ip,k)
(i−1,k|i−1+ip,k−1+kr) δzTi−1+ip,k−1+kr

)

+
( dyti, j

dhwti,k−1

) 1

∑
ip=0

dtwe(ip)
i, j

1

∑
kr=0

∆
(i−1+ip,k−1)
(i−1+ip,k−1+kr)×

(A Sx)(i,k−1+kr)
(i−1+ip,k−1+kr|i,k−1)

(

δxTi−1+ip,k−1+kr + Sx(i,k−1+kr)
(i−1+ip,k−1+kr|i,k−1) δzTi,k−1

)

−
( dyti, j

dhwti,k

) 1

∑
ip=0

dtwe(ip)
i, j

1

∑
kr=0

∆
(i−1+ip,k)
(i−1+ip,k+kr)

(A Sx)(i,k+kr)
(i−1+ip,k+kr|i,k)

(

δxTi−1+ip,k+kr + Sx(i,k+kr)
(i−1+ip,k+kr|i,k) δzTi,k

)
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14.6.3 Discretized diffusion operator

Based on manipulations in the previous subsection, and generalizations to three-dimensional
geometry, we identify the discretized neutral diffusion operator

R[Ti, j,k] =
1

VTi, j,k

∂F [Ti, j,k]
∂Ti, j,k

=

(

1
dyti, j dhti, j,k

)

δx

(

1
dxtei−1, j

1

∑
kr=0

∆
(i−1,k−1+kr)
(i−1,k)

1

∑
ip=0

(dtwe dyt)(ip)
i−1, j

A(i−1+ip,k)
(i−1,k|i−1+ip,k−1+kr)

(

δxTi−1,k + Sx(i−1+ip,k)
(i−1,k|i−1+ip,k−1+kr) δzTi−1+ip,k−1+kr

))

+

(

1
dxti, j dhti, j,k

)

δy

(

1
dytni, j−1

1

∑
kr=0

∆
( j−1,k−1+kr)
( j−1,k)

1

∑
jq=0

(dxt dtwe)( jq)
i, j−1

A( j−1+ jq,k)
( j−1,k| j−1+ jq,k−1+kr)

(

δyTj−1,k + Sy( j−1+ jq,k)
( j−1,k| j−1+ jq,k−1+kr) δzTj−1+ jq,k−1+kr

))

+

(

1
dxti, j

)

δz

(

1
dhwti,k−1

1

∑
ip=0

(dtew)(ip)
i, j

1

∑
kr=0

∆
(i−1+ip,k−1)
(i−1+ip,k−1+kr)(A Sx)(i,k−1+kr)

(i−1+ip,k−1+kr|i,k−1)

(

δxTi−1+ip,k−1+kr + Sx(i,k−1+kr)
(i−1+ip,k−1+kr|i,k−1) δzTi,k−1

))

+

(

1
dyti, j

)

δz

(

1
dhwti,k−1

1

∑
jq=0

(dtns)( jq)
i, j

1

∑
kr=0

∆
( j−1+ jq,k−1)
( j−1+ jq,k−1+kr)(A Sy)( j,k−1+kr)

( j−1+ jq,k−1+kr| j,k−1)

(

δyTj−1+ jq,k−1+kr + Sy( j,k−1+kr)
( j−1+ jq,k−1+kr| j,k−1) δzTj,k−1

))

.

(14.79)

14.7 Diffusive flux components

Although equation (14.79) provides the desired discretized diffusion operator, it is useful
to identify the three diffusive flux components since ocean models are typically coded in
terms of flux components defined at the tracer cell faces. Implementing no-flux boundary
conditions is also easier when identifying fluxes.

14.7.1 Continuum considerations

Given generalized horizontal coordinates and partial cells, we require some care when
defining the flux components. For this purpose, recall that in the continuum the diffusion
operator is

R(T) = −∇ · F (14.80)

where
F = x̂ F(x) + ŷ F(y) + ẑ F(z) (14.81)

is the flux vector expressed in terms of physical vector components (see Section 19.12.3 for
a discussion of physical tensor components). In generalized orthogonal horizontal coordi-
nates, Section 19.11.4 notes that the divergence of a vector is written

∇ · F = (dy)−1 (dy F(x)),x + (dx)−1 (dx F(y)),y + F(z)
,z , (14.82)

where the squared line element is given by

(ds)2 = (h1 dξ1)2 + (h2 dξ2)2 + (dz)2 = (dx)2 + (dy)2 + (dz)2, (14.83)
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with h1 and h2 the stretching functions and (ξ1,ξ2) the generalized orthogonal coordinates.
For spherical longitude-latitude coordinates (ξ1,ξ2) = (λ,φ), the stretching functions are
(h1, h2) = (R, R cosφ) where R is the earth’s radius. For more on generalized orthogonal
coordinates, see Section or 19.12.2 for a summary, or the discussions in Chapters 18 and 19
for a complete treatment.

When the vertical grid spacing is a function of horizontal and vertical position, as for
the case with partial bottom cells, the divergence takes the more general form

∇ · F = (dy dz)−1 (dy dz F(x)),x + (dx dz)−1 (dx dz F(y)),y + F(z)
,z

≡ (dy dz)−1 (F(x)
area),x + (dx dz)−1 (F(y)

area),y + F(z)
,z . (14.84)

The area weighted flux components F(x)
area and F(y)

area have units (L2 × tracer× L/t).

14.7.2 Discrete fluxes

Given the continuum notions, we can identify the discrete versions of the diffusive flux.
The flux components can be identified directly from equations (14.79) and (14.84)

R[T]i, j,k = −





δxF(x)
i−1, j,k

dyti, j dhti, j,k
+

δyF(y)
i, j−1,k

dxti, j dhti, j,k
+ δzF(z)

i,k−1, j



 , (14.85)

where the subscript “area” was dropped from the horizontal fluxes. The area weighted
zonal flux component defined at the east face of T-cell Ti, j,k is

−F(x)
i, j,k =

1
dxtei, j

1

∑
kr=0

∆
(i,k−1+kr)
(i,k)

1

∑
ip=0

(dtwe dyt)(ip)
i, j ×

A(i+ip,k)
(i,k|i+ip,k−1+kr)

(

δxTi,k + Sx(i+ip,k)
(i,k|i+ip,k−1+kr) δzTi+ip,k−1+kr

)

. (14.86)

The area weighted meridional flux component defined at the north face of T-cell Ti, j,k is

−F(y)
i, j,k =

1
dytni, j

1

∑
kr=0

∆
( j,k−1+kr)
( j,k)

1

∑
jq=0

(dxt dtsn)( jq)
i, j ×

A( j+ jq,k)
( j,k| j+ jq,k−1+kr)

(

δyTj,k + Sy( j+ jq,k)
( j,k| j+ jq,k−1+kr) δzTj+ jq,k−1+kr

)

. (14.87)

The vertical flux component defined at the bottom face of T-cell Ti, j,k is

−F(z)
i, j,k =

(

1
dxti, j dhwti, j,k

)

1

∑
ip=0

dtew(ip)
i, j

1

∑
kr=0

∆
(i−1+ip,k)
(i−1+ip,k+kr)(A Sx)(i,k+kr)

(i−1+ip,k+kr|i,k)×

(

δxTi−1+ip,k+kr + Sx(i,k+kr)
(i−1+ip,k+kr|i,k−1) δzTi,k

)

+

(

1
dyti, j dhwti, j,k

)

1

∑
jq=0

dtns( jq)
i, j

1

∑
kr=0

∆
( j−1+ jq,k)
( j−1+ jq,k+kr)(A Sy)( j,k+kr)

( j−1+ jq,k+kr| j,k)×

(

δyTj−1+ jq,k+kr + Sy( j,k+kr)
( j−1+ jq,k+kr| j,k) δzTj,k

)

. (14.88)
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14.7.3 Identifying diagonal components to the diffusion tensor

The off-diagonal terms of the small angle diffusion tensor (12.20) are not separable from
the tracers. However, the diagonal terms are separable. It is useful to explicitly identify the
non-negative diagonal elements since they can be computed once per time step and used
repeatedly for all tracers.

From the area weighted zonal flux component (14.86), we identify the area weighted
diagonal tensor component

K11
i, j,k =

1
dxtei, j

1

∑
kr=0

∆
(i,k−1+kr)
(i,k)

1

∑
ip=0

(dtwe dyt)(ip)
i, j A(i+ip,k)

(i,k|i+ip,k−1+kr) (14.89)

which then leads to the form for the area weighted zonal flux component

−Fx
i, j,k = K11

i, j,k δxTi, j,k +
1

dxtei, j

1

∑
kr=0

∆
(i,k−1+kr)
(i,k) ×

1

∑
ip=0

(dtwe dyt)(ip)
i, j (Sx A)(i+ip,k)

(i,k|i+ip,k−1+kr) δzTi+ip,k−1+kr. (14.90)

Likewise, from the area weighted meridional flux component (14.87), we have the area
weighted diagonal tensor component

K22
i, j,k =

1
dytni, j

1

∑
kr=0

∆
( j,k−1+kr)
( j,k)

1

∑
jq=0

(dxt dtsn)( jq)
i, j A( j+ jq,k)

( j,k| j+ jq,k−1+kr) (14.91)

which then leads to the area weighted meridional flux component

−Fy
i, j,k = K22

i, j,k δyTi, j,k +
1

dytni, j

1

∑
kr=0

∆
( j,k−1+kr)
( j,k) ×

1

∑
jq=0

(dxt dtsn)( jq)
i, j (Sy A)( j+ jq,k)

( j,k| j+ jq,k−1+kr) δzTj+ jq,k−1+kr (14.92)

From the vertical flux component (14.88), we have

K33
i, j,k =

(

1
dxti, j dhwti, j,k

)

1

∑
ip=0

(dtew)(ip)
i, j

1

∑
kr=0

∆
(i−1+ip,k)
(i−1+ip,k+kr)((Sx)2 A)(i,k+kr)

(i−1+ip,k+kr|i,k)

+

(

1
dyti, j dhwti, j,k

)

1

∑
jq=0

(dtns)( jq)
i, j ×

1

∑
kr=0

∆
( j−1+ jq,k)
( j−1+ jq,k+kr)((Sy)2 A)( j,k+kr)

( j−1+ jq,k+kr| j,k)

(14.93)

which then leads to the form for the vertical flux component

− Fz
i, j,k = K33

i, j,k δzTi, j,k

+

(

1
dxti, j dhwti, j,k

)

1

∑
ip=0

(dtew)(ip)
i, j

1

∑
kr=0

∆
(i−1+ip,k)
(i−1+ip,k+kr)(A Sx)(i,k+kr)

(i−1+ip,k+kr|i,k) δxTi−1+ip,k+kr

+

(

1
dyti, j dhwti, j,k

)

1

∑
jq=0

(dtns)( jq)
i, j

1

∑
kr=0

∆
( j−1+ jq,k)
( j−1+ jq,k+kr)(A Sy)( j,k+kr)

( j−1+ jq,k+kr| j,k) δyTj−1+ jq,k+kr.

(14.94)

For the discussion of Section 14.8.3, we refer to the K33 δzTi, j,k term as the diagonal portion
of the vertical flux component, and the remaining terms represent the off-diagonal portion.
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For diagnostic purposes, it is often useful to map the diagonal tensor components
K11, K22, K33. As defined above, K11 and K22 represent area weighted versions of their
continuum analogs. However, it is relevant to map a field with dimensions of diffusivity in
order to compare with the input diffusivity A. For this purpose, one may wish to map

K11
i, j,k

dyti, j dhti, j,k
(14.95)

K22
i, j,k

dxti, j dhti, j,k
(14.96)

whose dimensions are those of a diffusivity. On a uniform grid in Cartesian space using full
vertical cells and neutral slopes less than the critical slope, these fields reduce to the value
of the neutral diffusivity A. On a sphere using spherical coordinates, full vertical cells,
and slopes less than the critical slope, K22 is generally less than A, whereas K11 equals A.
On a sphere with generalized orthogonal coordinates and/or next to a partial cell bottom,
the reduction generally does not occur for either field. This lack of reduction to the input
diffusivity is not a problem with the diffusion algorithm, rather it is a limitation of the
diagnostic.

14.7.4 Stencils for small angle flux components

A figure is useful to garner insight into the stencil deduced from the functional discretiza-
tion. Figure 14.3 provides such a stencil for the zonal component to the small angle neutral
flux Fx

i,k. Each triad is weighted by the smallest vertical distance consistent with the min-
imum thickness rule discussed in Section 14.4.3. A similar stencil holds for the meridional
component to the neutral diffusive flux.

For the vertical component (Figure 14.4) to the diffusive flux, a set of four triads are
used, each of which is rotated by 90 degrees relative to the triads shown for the zonal com-
ponent to the flux. The weighting for each triad is a combination of the zonal grid spacing
and a ratio of the minimum thickness rule spacing, normalized by the relevant vertical T-cell
distance. As a result of the rotation, the ∆ weighting for each of the four triads is generally
different.

14.8 Some further issues of numerical implementation

This section presents some general comments and details regarding the implementation of
the neutral diffusion scheme.

14.8.1 Gent-McWilliams skew-flux plus neutral diffusive flux

As noted in Section 12.2.2, discretization of the small angle neutral diffusion tensor also pro-
vides a discretization for the Gent-McWilliams skew diffusion process. All that is needed
is to make appropriate changes to the diffusivities according to the discussions in Chapter
13.

14.8.2 Discretization of the GM velocity for diagnostics

It is sometimes useful to compute the eddy-induced velocity (equation 12.56)) for diagnos-
tic purposes. In early realizations of the Gent and McWilliams (1990) scheme, such diag-
nostics were used to compute the meridional-vertical transport streamfunction. However,
a simpler and more direct method is available as described in Section 7.5.3.
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Figure 14.3: Stencil for computing the zonal component to the neutral diffusive flux
Fx

i,k (equation (14.86)). This flux component is located at the east face of T-cell Ti,k.
Shown are four density triads, each weighted by the relevant vertical spacing factor
∆. For the two triads extending upwards, the weighting is ∆(i,k−1)

(i,k) , whereas the two

triads extending downwards are weighted by∆(i,k)
(i,k). The tracer points with the open

circles denote tracer values which are determined through linear interpolation. For
the two triads extending into rock (shaded regions), they are zeroed out in the code
since they should not contribute to the diffusion operator.

The following discussion illustrates one choice for discretizing the three-dimensional
GM eddy-induced velocity. Additionally, it highlights the ambiguity inherent in the dis-
cretization, thus further motivating the skew-flux approach. That is, q discretization of GM
skewsion relies on the functional formalism of Section 14.1. In contrast, we have found no
general principle to guide discretization of GM advection. More than one approach has
been tried in the literature (e.g., see Danabasoglu and McWilliams (1995) and Weaver and
Eby (1997)). The form chosen here uses unbroken triad-based neutral slopes. In particular,
averaging operators are not applied to the numerator and denominator of the discretized
form of ∇zρ/ρ,z. Use of unbroken triads means that the neutral slopes computed for the
diffusion calculation can be employed for diagnosis of the eddy-induced velocity.

For computing the zonal eddy-induced velocity, defined at the zonal face of the tracer
cell Ti, j,k, we take the difference between diffusivity weighted slopes averaged so that they
live at the bottom-zonal corners of a tracer cell. Thus, we define the following diffusivity
weighted slope

4 (κ Sx)i,k =

κi,k Sx(i,k)
(i,k|i,k) +κi+1,k Sx(i+1,k)

(i,k|i+1,k) +κi,k+1 Sx(i,k+1)
(i,k+1|i,k) +κi+1,k+1 Sx(i+1,k+1)

(i,k+1|i+1,k), (14.97)

which represents a zonal and vertical average of the four diffusivity weighted triad-slopes
surrounding the bottom-zonal corner of the tracer cell Ti,k−1. Note the irrelevant meridional
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Figure 14.4: Stencil for computing the vertical component neutral diffusive flux
Fz

i,k−1 (equation (14.88)), which is located at the bottom face of T-cell Ti,k−1. Shown
are four density triads, each weighted by the relevant vertical spacing factor ∆.
Note the rotation of the triads relative to those used to construct the zonal flux
in Figure 14.3. Each of the four triads in this figure employ a generally different
vertical weighting factor ∆.

label j was dropped. Likewise, we define the diffusivity weighted meridional slope

4 (κ Sy) j,k =

κ j,k Sy( j,k)
( j,k| j,k) +κ j+1,k Sy( j+1,k)

( j,k| j+1,k) +κ j,k+1 Sy( j,k+1)
( j,k+1| j,k) +κ j+1,k+1 Sy( j+1,k+1)

( j,k+1| j+1,k). (14.98)

Given these slopes, the zonal eddy-induced advection velocity, defined at the zonal face of
the tracer cell Ti, j,k, is given by

u∗i,k =
(κ Sx)i,k−1 − (κ Sx)i,k

dhti,k
, (14.99)

and the meridional eddy-induced advection velocity, defined at the meridional face of the
tracer cell Ti, j,k, is given by

v∗j,k =
(κ Sy) j,k−1 − (κ Sy) j,k

dht j,k
. (14.100)

The vertical component w∗ of the eddy-induced advection velocity is obtained by verti-
cally integrating the convergence of the horizontal eddy-advection velocities, as done to
compute the resolved scale vertical advection velocity. Note that traditionally there is a
zero vertical eddy-advection velocity at the top and bottom of the ocean. This boundary
condition on the velocity effectively places a boundary condition on the diffusivity κ (e.g.,
see discussion in Gent et al. (1995) and Treguier et al. (1997)).
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14.8.3 Computing the vertical flux convergence

The vertical flux convergence −δzF(z) presents a special case numerically due to the small
grid spacing in the vertical relative to the horizontal. As noted by Cox (1987), it is numer-
ically efficient to split the off-diagonal portions of F(z) from the diagonal K33 portion. The
K33 term presents the most severe limitation on the time step, and so it is useful to time
step this term implicitly, along with the usual vertical diffusion term. That is, it is common
to have the following portion of the diffusion equation time stepped implicitly

∂tT = δz [(AD + K33) δzT]. (14.101)

The off-diagonal terms in F(z) present a less severe time step constraint, and so they are
time stepped explicitly. Indeed, it is not feasible to time step the off-diagonal components
implicitly since to do so would involve inversion of a matrix the size of the model.

The above approach is useful for maintaining numerical stability. However, because of
the time split of the vertical flux component F(z), it is generally not possible to rigorously
maintain the balance within the vertical flux component of active tracers according to the
discussion in Section 12.1.6. That is, the continuum relation

α F(z)(θ) = β F(z)(s) (14.102)

is not fully satisfied by the discretized flux, so long as the K33 piece is time stepped implic-
itly. As discussed in Griffies et al. (1998), this limitation of the scheme has not proven to be a
problem in realistic simulations. Even so, it has been found useful to reduce the imbalance
in the vertical flux component by splitting K33 into explicit and implicit pieces

K33 = K33
explicit + K33

implicit, (14.103)

where
K33

explicit ≤ (∆z)2/(4∆t). (14.104)

The explicit piece is combined with the rest of the vertical flux for explicit time stepping,
whereas the implicit piece is split off for implicit time stepping. For parts of the simula-
tion where K33 ≤ (∆z)2/(4∆t), K33

implicit is set to zero. Otherwise, its value is reduced to
its minimum available for linear stability of the explicitly time stepped vertical diffusion
equation.
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Frictional dissipation of kinetic energy in the ocean is tiny (Section 4.4.2), yet
kinetic energy dissipation in ocean models is huge. Why the distinction? Ocean
models require friction for numerical reasons, and these reasons are of no concern
to the real ocean. It is therefore a goal of most ocean climate modelers to reduce
friction levels to their lowest where we both retain a numerically stable and noise-
free solution, and allow the flow to have a nontrivial Reynolds number.

There is no well established theory for how to close the momentum equations
used in ocean climate models. Instead, various “tricks” are employed. So long
as the methods maintain certain desired symmetries, they are just as warranted
as any other approach. This part of the book attempts to document a variety of
approaches. Much of the material transcends details of a particular discrete ocean
model lattice. Hence, it should be of interest to modelers of all flavors.

The formulation of friction in ocean models follows from standard methods in
continuum mechanics. Many of the mathematical tools developed in Part VI are
useful here. In particular, these tools help to maintain some basic requirements of
symmetry on the sphere, whose absence would represent a disrespect of the con-
tinuum system’s symmetries. But the sophistication of the mathematics involved
in formulating the frictional operator should not lead the reader to assume this is
physically rigorous material. Instead, it is best regarded as sophisticated engineer-
ing with the practical goal, again, of maintaining small levels of friction without
incurring unexceptable levels of grid noise.
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The purpose of this chapter is to describe the fundamentals of horizontal mo-
mentum friction used in many ocean climate models. Discussions are limited to
the continuum. Chapter 16 provides guidelines for choosing the viscosity setting
the strength of the model’s friction, and Chapter 17 presents discretization methods
appropriate for a B-grid ocean model.

15.1 Boussinesq and non-Boussinesq friction

Throughout this chapter as well as Chapter 17, we focus on establishing friction
within the context of the unaveraged equations of motion derived in Chapter 3.
Such is strictly a mis-representation of the unaveraged equations, since they em-
ploy dissipation operators due to the tiny molecular friction, not the qhuge friction
necessary for ocean climate models of focus here. Nonetheless, we take this ap-
proach largely for purposes of tidiness. When transferring the present results to
model fields, we follow the mapping given by Table 6.1. In particular, v → vρ for
the non-Boussinesq fluid, and v = vρ for the Boussinesq fluid. Notably, this map-
ping means that it is the velocity vρ = v (ρo/ρ) that is used to construct the friction
operator in the non-Boussinesq model, not the velocity v. In addition, the friction
operator in the model represents a discrete version of the averaged momentum flux

〈F̃(u)
sgs 〉 → F(u)

model. (15.1)

Hence, when considering model implementations, factors of density reduce to their
Boussinesq value ρo, which simplifies the numerical treatment in the non-Boussinesq
case.

15.2 Introduction and general framework

The physical framework used here for deriving the form of the momentum friction
operator is the following:

• The fluid motion preserves the hydrostatic balance.∗ This assumption is part
of the Traditional Approximation (see Section 3.1) fundamental to large scale
ocean climate modeling, whereby the ocean is considered a shallow layer of
fluid moving on a rotating sphere.

∗Williams (1972) generalizes to non-hydrostatic motion.



15.3. PROPERTIES OF THE STRESS TENSOR 333

• Horizontal kinetic energy, which dominates the vertical kinetic energy in hy-
drostatic flows, is dissipated by friction.

• Friction does not introduce interior sources or sinks of angular momentum.
Hence, friction vanishes when the fluid undergoes a solid body rotation. On
a plane, friction also vanishes under uniform translations.

• Stresses associated with friction in the interior of the fluid are directly propor-
tional to the local strain acting on fluid parcels. This assumption follows the
generalized Hooke’s Law approach commonly used in elasticity theory (e.g.,
Aris (1962), Landau and Lifshitz (1986), and Smagorinsky (1993)).

It is common to additionally assume that frictional stresses maintain transverse
isotropy in which gravity picks out the only special direction (e.g., Smagorinsky
(1993), Pacanowski and Griffies (1999), and Griffies and Hallberg (2000)). How-
ever, Smith and McWilliams (2002) suggested that anisotropic transverse stresses
are more appropriate. The freedom afforded from transverse anisotropy allows
one, in particular, to prescribe a friction force that is a function of the flow direc-
tion and/or an a priori specified direction. Such has been found to be of use for
ocean climate modeling, especially when aiming to increase the strength of simu-
lated equatorial undercurrents (Large et al. (2001)).

For simplicity, the analysis in much of this chapter uses Cartesian coordinates
and Cartesian tensors. Generalizations are straightforward so long as the formu-
lation respects the tensor rules summarized in Section 19.1 and 19.12. Section 15.7
details the friction operator appropriate for a generalized orthogonal coordinate
ocean model.

15.3 Properties of the stress tensor

As we saw in Section 3.4.2, forces acting on an element of a continuous media can
be classified into two categories. External or body forces act throughout the media,
with forces from gravity, Coriolis, and electromagnetism common examples. Inter-
nal or contact forces act on an element of volume through its bounding surface, with
forces from pressure or other stresses common examples. The balance between all
forces with acceleration leads, through Newton’s Second Law of Mechanics, to the
equations of motion. Furthermore, if all torques acting on a fluid parcel arise from
macroscopic forces, which is the case for Newtonian fluids such as seawater, then
fluid parcels conserve angular momentum, and so should ocean model solutions.
Notably, however, the presence of meridional boundaries precludes angular mo-
mentum conservation in the World Ocean, except in regions of the Southern Ocean
devoid of meridional barriers. More is said regarding angular momentum in Sec-
tions 3.9 and 3.10.

As introduced in Section 3.4.4, the stresses acting within a continuous media can
be organized into a second order stress tensor with generally 3 × 3 independent
elements. The divergence of these stresses gives rise to the internal forces acting
in the media. A proper account of the angular momentum budget implies that the
stress tensor is symmetric, which brings the number of independent stress elements
down to six. It is useful to note that symmetry of the stress tensor is equivalent to
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Cauchy’s reciprocal theorem (see Section 3.4 of this book or Section 5.13 of Aris (1962)),
which says that each of two stresses at a point has an equal projection on the normal
to the surface on which the other acts.

15.3.1 The strain tensor

Consider two infinitesimally close fluid parcels with material coordinates ζ a and
ζa + dζa, where a = 1, 2, 3. The components

(u1, u2, u3) =
d
dt

(x1, x2, x3) (15.2)

of the velocity for these two parcels differ by the increment

dum =
∂um

∂ζa dζa

=
∂um

∂ζa
∂ζa

∂xn dxn

=
∂um

∂xn dxn

= um
,n dxn, (15.3)

where the summation convention is used in which repeated indices are summed
over their range. The velocity derivatives

um
,n =

∂um

∂xn (15.4)

form the components to a second order tensor. In order to attach physical sig-
nificance to this tensor, it is useful to separately consider its symmetric and anti-
symmetric components∗, which are written

um,n = Ωmn + emn, (15.5)

where

2Ωmn = um,n − un,m (15.6)
2 emn = um,n + un,m, (15.7)

and um = gmn un are the covariant components to the velocity vector. Note that
the components to the metric tensor gmn are equal to the Kronecker symbol δmn
when working with Cartesian coordinates.† In curvilinear coordinates, the partial
derivatives appearing in Ωmn and emn generalize to covariant derivatives. We con-
sider this generalization in Section 15.7.1, where the comma notation for partial
derivative introduced in equation (15.4) is replaced by a semi-colon for covariant
derivative. Chapters 18 and 19 provide full discussion of covariant derivatives.

∗A similar decomposition is considered in Section 11.4 where we discuss the sub-grid scale tracer
transport tensor.

†More general metric tensors are described in Chapters 18, 19, and 5. See also the summary
discussion in Section 19.12.
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The anti-symmetric piece of the velocity derivative tensor is related to the vor-
ticity through

2ωm = −εmnpΩnp

= −εmnp un,p, (15.8)

where εmnp is the Levi-Civita symbol. In Cartesian vector notation, this result takes
the form

ω =
1
2
∇∧ u. (15.9)

Standard results from fluid mechanics establish the connection between vorticity
and rigid body rotation of a fluid parcel.∗ If the motion is completely rigid, which
means that it consists of a translation plus a rotation, then the symmetric part of
the velocity derivative tensor vanishes. Consequently, the symmetric tensor emn is
called the deformation or rate of strain tensor since it represents deviations from rigid
body motion.

To provide a further interpretation of the strain tensor, consider the squared
arc-distance (ds)2 = ds2 between two infinitesimally close material parcels of fluid

ds2 = gmn dxm dxn

= gmn
∂xm

∂ζa
∂xn

∂ζb dζa dζb. (15.10)

The material time derivative of this distance is given by

d(ds2)
dt

= gmn

(

∂um

∂ζa
∂xn

∂ζb +
∂xm

∂ζa
∂un

∂ζb

)

dζa dζb (15.11)

where dζa/dt = 0 since ζa are material coordinates. Use of the chain rule in the
forms

∂um

∂ζa dζ a = um
,n dxn (15.12)

∂xm

∂ζa dζ a = dxm (15.13)

renders
d(ds2)

dt
= 2 emn dxm dxn, (15.14)

or equivalently
1

ds
d(ds)

dt
= emn

dxm

ds
dxn

ds
. (15.15)

Now dxm/ds is a component of the unit vector pointing from one fluid parcel to
the other. Hence, equation (15.15) says that the rate of change of the infinitesimal
distance separating the two parcels, as a fraction of the distance, is related to the
relative position of the parcels through the strain tensor. Section 4.42 of Aris (1962),
amongst others, provides further elaboration.

∗See also Section 3.9.2 for a discussion of solid-body motion of a particle on a rotating sphere.
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15.3.2 Relating strain to stress

The divergence of the stress tensor yields the internal forces acting on a fluid par-
cel. Stress is related to strain, where strain arises from the kinematics of parcel
deformations. In elasticity theory, the relation between stress and strain is typically
assumed to follow some form of Hooke’s law. In its simplest form, this “law” lin-
early relates the stress to the strain.∗ In fluid dynamics, it is common to also assume
a stress-strain relation in the form of Hooke’s law. The details of this relation often
depend quite strongly on the properties of the fluid as well as the flow state. Such
dependencies can generally make the fluid’s stress-strain relation nonlinear.

When the fluid is static and exposed only to buoyancy forces, it remains in hy-
drostatic balance, and the only form of stress on a fluid parcel is due to the pressure
(Section 3.6). Hence, the stress tensor for such a state takes the form

Tmn = −p δmn (15.16)

where p is the pressure and δmn is the Kronecker delta. Chapter 1 of Salmon (1998)
provides some comments on the implicit identification of this pressure with ther-
modynamic pressure.

When the fluid undergoes deformations, further stresses bring the stress tensor
to the more general form

Tmn = −p δmn + τ̃mn. (15.17)

For purposes of formulating friction to be used in an ocean model, the divergence
of τ̃mn is associated here with dissipative stresses in the fluid, thus motivating the
name frictional stress tensor. For a Newtonian fluid, the frictional stress tensor can
be written

τ̃mn = ρCmnpq epq. (15.18)

In general, this relation between stress and strain is of the form of Hooke’s law,
where the components Cmnpq of the fourth-order kinematic viscosity tensor can de-
pend on the state of the fluid. Assuming this form for the internal stresses, the es-
sential problem with subgrid scale parameterization of momentum fluxes reduces
to determining appropriate forms for Cmnpq.

15.3.3 Angular momentum and symmetry of the stress tensor

As mentioned in Section 15.3.1, the symmetric strain tensor emn vanishes for motion
consisting of rigid rotation plus uniform translation. In such cases, the generalized
Hooke’s law (15.18) says that the stress tensor Tmn reduces to −p δmn since τ̃mn

vanishes. The purpose of this section is to provide some further details regarding
these ideas and their connection to conservation of angular momentum.

The continuum form of Newton’s law is given by

ρ
dum

dt
= ρ f m + Tmn

,n (15.19)

where ρ is the mass density, and f i are components to external or body forces such
as those arising from gravity and the Coriolis force. Tmn

,n is the divergence of the

∗A similar relation between dynamics and kinematics forms the basis of general relativity, where
stresses associated with matter/energy are directly proportional to space-time curvature.
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stress tensor, where Tmn is written in the form (15.17) which incorporates the pres-
sure. A component of the angular momentum for a fluid parcel is given by

Lm = εmnp xn up ρ dV, (15.20)

where ρ dV is the mass of the infinitesimal parcel, and εmnp is the totally anti-
symmetric Levi-Civita symbol (Section 18.12). The material time derivative of the
parcel’s angular momentum is given by

dLm

dt
= εmnp xn dup

dt
ρ dV, (15.21)

where d(ρ dV)/dt = 0 follows from mass conservation. For a Boussinesq fluid, ρ
appears as the constant ρo, and d(dV)/dt = 0 then follows from volume conserva-
tion. Substituting Newton’s law into this expression leads to

dLm

dt
= εmnp (xn ρ f p + xn Tpq

,q ) dV. (15.22)

The first term accounts for torques placed on the parcel from external forces. The
second term arises from torques on the fluid from internal stresses. To further inter-
pret the second term, consider the budget for total angular momentum of the fluid,
which is obtained by integrating over the fluid volume

∫ dLm

dt
=
∫

εmnp (xn ρ f p + xn Tpq
,q ) dV. (15.23)

Now integrate by parts on the stress tensor term to find
∫

εmnp xn Tpq
,q dV =

∫

εmnp [∂q (xn Tpq)− Tpn] dV. (15.24)

The first term integrates to a boundary contribution, which is non-vanishing for
cases in which there are torques arising from boundary stresses. The second term
is a volume contribution and it picks out the term εmnp τ̃

pn, since εmnp δ
pn = 0. For

Newtonian fluids, such as ocean water, the internal torques are balanced and so
there is no net contribution to angular momentum from internal stresses. This case
can be ensured if the frictional stress tensor is symmetric

τ̃mn = τ̃nm, (15.25)

thus renderingεmnp τ̃
pn = 0. This result provides the reasoning for our considering

only symmetric stress tensors in the following.

15.3.4 Quasi hydrostatic approximation

As pointed out by Smith and McWilliams (2002), there is some ambiguity regard-
ing use of the quasi-hydrostatic approximation in so far as it reduces the form of the
stress tensor. We follow their pragmatic approach whereby it is noted that our con-
cern is to derive friction for a fluid satisfying the Traditional Approximation (i.e.,
the hydrostatic primitive equations), where friction is applied explicitly only to the
horizontal momentum. Friction due to deformations of the vertical velocity are
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ignored, since the vertical momentum equation is reduced to the hydrostatic bal-
ance. Such forms here the quasi-hydrostatic approximation, where the “quasi” label
signifies that the fluid is not static, although the hydrostatic balance is maintained.

These considerations suggest that we split the frictional stress tensor into two
sub-tensors

τ̃mn = τmn
vert + τmn. (15.26)

The first part of the stress tensor, τmn
vert, is assumed to arise only from vertical defor-

mations of the horizontal velocity field. It can be written as

τmn
vert = 2ρκ δn3 em3 ≈ ρκ δn3 ∂3 um (15.27)

withκ a non-negative viscosity, and m = 1, 2. The second tensor, τmn, embodies the
stress arising from horizontal deformations of the horizontal velocity field. Conse-
quently, the labels m, n = 1, 2 range only over the transverse coordinates, with τmn

set to zero if one of the indices equals 3. It is symmetric, according to the require-
ments of angular momentum conservation discussed in Section 15.3.3. Hence, the
general form of the frictional stress tensor is given by

τ̃mn =





τ11 τ12 ρκ u,z
τ12 τ22 ρκ v,z
ρκ u,z ρκ v,z 0



 . (15.28)

Note that τ̃33 = 0 is consistent with our use of the hydrostatic approximation,
which reduces the vertical momentum equation to the inviscid hydrostatic balance.

15.3.5 Trace-free frictional stress

The frictional stress tensor under consideration here is a deviatoric stress tensor
(e.g., Smagorinsky (1993), Salmon (1998)), which is defined to have a zero trace

δmp τ̃
mp = τ̃1

1 + τ̃2
2 + τ̃3

3 = 0, (15.29)

where we lowered one index on the stress tensor components to yield a coordinate
invariant expression for the trace.∗ Pressure incorporates the trace part of the gen-
eral stress tensor, as seen in equation (15.17). As mentioned in Section 15.3.4, the
quasi-hydrostatic approximation allows us to ignore stresses due to deformations
in the vertical velocity field, and so we can set τ̃33 = 0 without loss of generality.
If we make this approximation, the trace-free and symmetric conditions lead to the
transverse stress tensor

τmn =
(

τ11 τ12

τ12 −τ11

)

. (15.30)

Specification of this tensor, and the corresponding friction vector, is the focus of the
rest of this chapter.

∗Again, with Cartesian tensors, there is no difference in the index placement.
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15.4 Properties of the viscosity tensor

For three-dimensional systems, the viscosity tensor Cmnpq generally contains 81 de-
grees of freedom (81 = 3× 3× 3× 3). However, the properties just described, and
others to follow, greatly reduce this number. In particular, our focus on τmn, for
m, n = 1, 2, allows us to start with 16 = 2× 2× 2× 2 degrees of freedom. Hence,
in the following discussion all labels are assumed to run over just the transverse
coordinates 1, 2.

15.4.1 Hooke’s law

The Hooke’s Law form for stress

τmn = ρCmnpq epq (15.31)

indicates that the only relevant forms of the viscosity tensor are those satisfying

Cmnpq = Cmnqp (15.32)

since the strain tensor emn is symmetric. This constraint reduces the degrees of
freedom in the viscosity tensor to 2× 2× 3 = 12. The 3 arises from the 2 + 1 = 3
degrees of freedom in a symmetric 2× 2 matrix. We can therefore write the general
viscosity tensor

Cmnpq =









C1111 C1112 C1121 C1122

C1211 C1212 C1221 C1222

C2111 C2112 C2121 C2122

C2211 C2212 C2221 C2222









(15.33)

in the restricted form

Cmnpq =









C1111 C1112 C1112 C1122

C1211 C1212 C1212 C1222

C2111 C2112 C2112 C2122

C2211 C2212 C2212 C2222









. (15.34)

15.4.2 Angular momentum

Assuming a symmetric stress tensor brings about the following symmetry on the
viscosity tensor

Cmnpq = Cnmpq. (15.35)

As such, the total degrees of freedom become 3× 3 = 9, and the viscosity tensor
takes the form

Cmnpq =









C1111 C1112 C1112 C1122

C1211 C1212 C1212 C1222

C1211 C1212 C1212 C1222

C2211 C2212 C2212 C2222









. (15.36)
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15.4.3 Kinetic energy dissipation

The budget for horizontal kinetic energy per volume of a fluid parcel is given by

ρ

2
d(δmn um un)

dt
= ρδmn um f n + δmn um Tnp

,p

= ρ um f m + (un Tnp),p − un,p Tnp

= ρ um f m + (un Tnp),p − enp Tnp

= ρ um f m + (un Tnp),p + p un
,n − enp τ

np, (15.37)

where we assumed Cartesian coordinates for simplicity (see Section 4.4.2 for the
general case). The first term on the right hand side arises from work done by exter-
nal forces. The second term, when integrated over the fluid domain, accounts for
work done at boundaries by the stresses. The third term arises from pressure work
against changes in the parcel’s volume. This term vanishes for a volume conserving
fluid. The fourth term is present throughout the fluid domain, and it can be written

emn τ
mn = ρ emn Cmnpq epq. (15.38)

In general, this term is sign-indefinite. However, we insist that the frictional stress
tensor manifests dissipative friction at each point in the fluid, thus necessitating

emn Cmnpq epq ≥ 0. (15.39)

Since the strain tensor emn is symmetric, this constraint is satisfied if

Cmnpq = Cpqmn. (15.40)

This constraint brings the number of degrees of freedom in the viscosity tensor
down to 6 = 3 + 2 + 1, which is the number of degrees of freedom in a 3 × 3
symmetric matrix. The resulting viscosity tensor takes the form

Cmnpq =









C1111 C1112 C1112 C1122

C1112 C1212 C1212 C1222

C1112 C1212 C1212 C1222

C1122 C1222 C1222 C2222









. (15.41)

15.4.4 Trace-free transverse stress

As discussed in Section 15.3.5, we are considering trace-free transerve stress ten-
sors. Hence,

τ11 + τ22 =
(

C1111 + C1122
)

e11 + 2
(

C1112 + C2212
)

e12 +
(

C1122 + C2222
)

e22 = 0. (15.42)

Given the general independence of the three strain tensor components, we satisfy
this constraint for all cases only when the three terms individually vanish

C1122 = −C1111 (15.43)

C2212 = −C1112 (15.44)

C1122 = −C2222. (15.45)
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There are now three degrees of freedom in the viscosity tensor

Cmnpq =









α γ γ −α
γ δ δ −γ
γ δ δ −γ
−α −γ −γ α









(15.46)

where we introduced the short-hand notation for the three viscosities

C1111 = α (15.47)

C1112 = γ (15.48)

C1212 = δ. (15.49)

15.5 Transverse isotropy

Gravity breaks three-dimensional isotropy down to transverse isotropy about the
local vertical direction ẑ. Before considering the more general anisotropic case in
Section 15.6, we first consider the isotropic case. This case is presently chosen by
most ocean climate models (e.g., Griffies and Hallberg (2000)).

15.5.1 Viscosity tensor

Transverse, or axial, isotropy means two things. First, the physical system remains
invariant under arbitrary rotations about the ẑ direction. Second, the physical sys-
tem remains invariant under the transformation z→ −z, and x→ y, y→ x, which
is a transformation between two right handed coordinate systems, with the verti-
cal pointing up and down, respectively. Since friction is directly proportional to
viscosity, and since the physical system is directly affected by friction, transverse
isotropy for the physical system means that the viscosity tensor must also manifest
this symmetry.

The transformation matrix for rotation about the vertical takes the form

Λm
m =





cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1



 , (15.50)

and the transformation matrix between right handed coordinate systems takes the
form

Λm
m =





0 1 0
1 0 0
0 0 −1



 . (15.51)

Under an arbitrary transformation, the fourth order viscosity tensor transforms as

Cm n p q = Λm
m Λ

n
n Λ

p
p Λ

q
q Cmnpq. (15.52)
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Chapters 5, 18, and 19 provide discussions of such transformation rules, and Sec-
tion 19.12 provides a summary of certain salient points. Note that restricting at-
tention to the two-dimensional transverse subspace allows us to focus on the two-
dimensional portion of these transformation matrices. In general, transverse isotropy
imposes the constraint on the viscosity tensor

Cm n p q ≡ Cmnpq

= Λm
m Λ

n
n Λ

p
p Λ

q
q Cmnpq, (15.53)

where Λm
m is one of the given transformation matrices.

Determining the relations between the elements of Cmnpq requires enumeration
of the possibilities. For example, with a rotation angle of π/2 about ẑ, rotational
symmetry implies

C1 2 2 2 ≡ C1222 = −C2111, (15.54)

which is a constraint also imposed by the trace-free condition discussed in Section
15.4.4. However, the transformation between two right handed coordinate systems
implies

C1222 = C2111. (15.55)

These two results are satisfied only if

C1222 = C2111 = 0⇒ γ = 0. (15.56)

Likewise, insisting on isotropy when rotating by π/4 implies

C1111 = (C1111 + C1122 + 2 C1212)/2, (15.57)

or
C1212 = (C1111 − C1122)/2⇒ δ = α. (15.58)

Consequently, the transverse isotropic viscosity tensor takes the simple form

Cmnpq = α









1 0 0 −1
0 1 1 0
0 1 1 0
−1 0 0 1









, (15.59)

thus manifesting only a single viscous degree of freedom.

15.5.2 Stress tensor

The transverse stress tensor satisfying transverse isotropy is given by

τmn = ρ A
(

(e11 − e22) 2 e12
2 e12 (e22 − e11)

)

= ρ A (2 emn − gmn ep
p), (15.60)

where we introduced α = A as this is the common notation for viscosity in the
isotropic case (e.g., Pacanowski and Griffies (1999); Griffies and Hallberg (2000)).
Notice how the stress is a function only of the two strain terms e11 − e22 and 2 e12,
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instead of the three components e11, e22, e12. For this reason, it is common to define
the tension and shearing rate of strain, also known as the deformation rates, as

eT = e11 − e22 = u1,1 − u2,2 (15.61)
eS = 2 e12 = u1,2 + u2,1. (15.62)

The deformation rates have dimensions of inverse time. Their forms in generalized
orthogonal coordinates are presented in Section 15.7.1.

The second expression in equation (15.60) is written in a covariant form, with
gmn the components to the inverse metric tensor (Section 19.12). We also introduced
the trace of the strain tensor

gmn emn = en
n = e1

1 + e2
2 (15.63)

which is a scalar and so invariant under transformations of coordinates. The covari-
ant form of the stress tensor (15.60) is valid for all coordinate systems. We consider
the case of general orthogonal coordinates in Section 15.7.

15.5.3 The friction vector

The friction vector is given by the covariant divergence of the frictional stress tensor.
In Cartesian coordinates, the covariant divergence is computed via the usual partial
derivative operator

ρ Fm = τ̃mn
,n . (15.64)

Performing the divergence using the transverse stress tensor in equation (15.60),
as part of the full frictional stress tensor τ̃mn given by (15.28), leads to the friction
components

ρ F1 = ∇z · (ρ A∇z u1) + ẑ · ∇z u2 ∧∇z (ρ A) + [ρκ (u1
,z)],z (15.65)

ρ F2 = ∇z · (ρ A∇z u2)− ẑ · ∇z u1 ∧∇z (ρ A) + [ρκ (u2
,z)],z (15.66)

ρ F3 = 0. (15.67)

In these expressions, the horizontal divergence operator ∇z = (∂1, ∂2, 0) was in-
troduced, z = ξ3 is the vertical coordinate, and A is the viscosity associated with
horizontal deformations. The factors of density cancel out trivially upon making
the Boussinesq approximation. Note that when making the quasi-hydrostatic ap-
proximation (as in the Traditional Approximation), the vertical friction F3 is ig-
nored so that the vertical momentum equation reduces to the inviscid hydrostatic
equation. The extra cross-product terms appearing in the transverse friction vanish
when using a constant viscosity. Their importance when using a spatially noncon-
stant viscosity is briefly highlighted in the next section.

15.5.4 The case of nonconstant viscosity

It now quite common for global ocean modelers to employ a nonconstant viscosity
for various numerical reasons. As emphasized by Wajsowicz (1993), some imple-
mentations of the corresponding friction vector often ignore the importance of for-
mulating friction as the divergence of a symmetric stress tensor. Namely, what is
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sometimes done is to take the friction appropriate for a constant viscosity Boussi-
nesq fluid

F1
const = ∇z · (A∇z u1) + [κ (u1

,z)],z (15.68)

F2
const = ∇z · (A∇z u2), +[κ (u2

,z)],z (15.69)

and allow A to be nonconstant. That is, the cross-product terms derived above
are dropped. Focusing on the two-dimensional transverse sub-space, dropping the
cross-product terms amounts to employing the non-symmetric stress tensor

τmn
NS = ρo A

(

u1
,1 u1

,2
u2

,1 u2
,2

)

. (15.70)

It is easy to show that the chosen friction dissipates kinetic energy since it is written
as a Laplacian. However, for a fluid in uniform rotation

u = Ω ∧ x, (15.71)

where u = (u1, u2, 0), x = (x1, x2, 0), and Ω is spatially constant, the horizontal
friction vector takes the form

F(h) = −∇∧ (AΩ), (15.72)

and it vanishes only when A is a constant. As such, by using friction derived from a
non-symmetric stress tensor and with a non-constant viscosity, a uniformly rotating
fluid feels a nonzero stress. Conversely, such a stress tensor can introduce uniform
rotation; i.e., it can act as an internal source or sink of angular momentum. Unless
one has a physical reason for doing so, such viscosity dependent sources of angular
momentum should be avoided.

15.6 Transverse anisotropy

Smith and McWilliams (2002) argued that friction should be determined accord-
ing to the directions of the current flow. For example, in a zonal current, such as
that along the equatorial region, friction arising from shears in the direction of the
current (u,x) should be preferentially larger than friction from shears perpendicu-
lar to the current (u,y). They presented some compelling arguments that suggest
this anisotropy is relevant for a physically based closure of the momentum equa-
tion. More pragmatically, both Smith and McWilliams (2002) and Large et al. (2001)
noted that numerical constraints allow for anisotropy, and exploiting such freedom
enhances the simulation’s integrity.

15.6.1 Viscosity tensor

Following Smith and McWilliams (2002), we start with a viscosity tensor of the form

Cmnpq = P δmn δpq + Q (δmp δnq + δmq δnp) + R (δmn spq + smn δpq)
+ S (δmp snq + δmq snp + smp δnq + smq δnp) + T smn spq (15.73)
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where P, Q, R, S, T are viscosities and smn is a symmetric tensor defined as an outer
product

smn = ŝm ŝn. (15.74)

Smith and McWilliams (2002) suggest orienting viscosity according to the instanta-
neous velocity field, in which case

ŝ =
u
|u| . (15.75)

In contrast, Large et al. (2001) suggest orienting the viscosity according to the local
grid lines. For example, with an eastward orientation using spherical coordinates,

ŝ = (1, 0). (15.76)

This orientation has been found useful to increase the strength of the predomi-
nantly zonal equatorial currents in the Pacific (Large et al. (2001)). In contrast, for
time dependent eddying flows, the dynamic orientation may spread friction over
a broader domain in the time mean, and so lead to larger effective friction than for
the case with a static orientation. In general, tests are necessary to determine what
is best for the particular application.

Regardless the choice for the orientation tensor smn, we assume that its compo-
nents satisfy the two identities

s11 + s22 = 1 (15.77)

s11 s22 = s12 s12. (15.78)

These identities are used to simplify the form of the stress tensor in Section 15.6.2.
Additionally, Cmnpq as written in equation (15.73) satisfies the trace-free property
from Section 15.4 if we impose

2 (P + Q) + R = 0 (15.79)
R + 2 S + T/2 = 0. (15.80)

These relations are assumed in the following.

15.6.2 Stress tensor

The transverse stress tensor τmn = ρCmnpq epq is given by

τmn = ρ

(

C1111 (e11 − e22) + 2 C1112 e12 C1112 (e11 − e22) + 2 C1212 e12
C1112 (e11 − e22) + 2 C1212 e12 −C1111 (e11 − e22)− 2 C1112 e12

)

(15.81)
where the viscosity tensor components are

C1111 = (P + 2 Q) + 2 (R + 2 S + (T/2) s11) s11 = (P + 2 Q)− T s11 s22 (15.82)

C1112 = (R + 2 S + T s11) s12 = (T/2) s12 (s11 − s22) (15.83)

C1212 = Q + S (s11 + s22) + T s12 s12 = (P + 2 Q− T/4) + T s12 s12. (15.84)

Since the combination of viscosities P + 2 Q appears throughout the stress tensor,
there are only two viscous degrees of freedom instead of the three present in Section
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15.4.4. The choice for the tensor smn as the outer product smn = ŝm ŝn eliminates one
of the three degrees of freedom.

Aiming to maintain compatibility with the notation of Smith and McWilliams
(2002), let us introduce the new viscosities

A = P + 2 Q (15.85)
D = T/2 (15.86)

thus leading to the stress tensor components

ρ−1 τ11 = (A− 2 D s11 s22) (e11 − e22) + 2 D s12 (s11 − s22) e12 (15.87)

ρ−1 τ12 = D s12 (s11 − s22) (e11 − e22) + 2 (A− D/2 + 2 D s12 s12) e12 (15.88)

τ22 = −τ11. (15.89)

Using s11 + s22 = 1 and s11 s22 = s12 s12 renders

ρ−1 τmn = A
(

eT eS
eS −eT

)

+ D∆
(

2 s12 −(s11 − s22)
−(s11 − s22) −2 s12

)

(15.90)

where and eT = e11 − e22 and eS = 2 e12 are the deformation rates introduced in
Section 15.5.2, and

2∆ = eS (s11 − s22)− 2 eT s12. (15.91)

Note that the isotropic results from Section 15.5 are recovered upon setting D = 0.
To help understand the nature of the new anisotropic contribution to the stress

tensor

τmn
aniso = ρD∆

(

2 s12 −(s11 − s22)
−(s11 − s22) −2 s12

)

, (15.92)

it is useful to consider both its orientation and how it affects kinetic energy evolu-
tion. First, let us write the orientation vector as

ŝ = (cosθ, sinθ) (15.93)

to render

τmn
aniso = ρD∆

(

sin 2θ − cos 2θ
− cos 2θ − sin 2θ

)

(15.94)

and
2∆ = eS cos 2θ− eT sin 2θ. (15.95)

In the special case of zonal orientation (15.76), θ = 0, whereas for the general flow
dependent case (15.75), s = u/|u| is oriented according to the horizontal velocity
vector. The anisotropic stress tensor is proportional to a rotation matrix

Rmn(û) =
(

sin 2θ − cos 2θ
− cos 2θ − sin 2θ

)

, (15.96)

and the corresponding friction is oriented according to this rotation matrix.∗

∗A rotation matrix is characterized by a unit determinant and inverse equal to its transpose.
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The contribution from friction to kinetic energy evolution (Section 15.4.3) takes
the form

−emn τ
mn = −ρ A (e2

T + e2
S) + 2ρD∆2. (15.97)

Hence, the anisotropic stress reduces the magnitude of frictional dissipation of ki-
netic energy. Because ∆ is proportional to the scalar dissipation term emn τ

mn when
A = 0, ∆ is also a scalar and so takes the same value regardless the coordinate
system. Taking the special case ŝ = (1, 0) and 2∆ = eS leads to

−emn τ
mn = −ρ A (e2

T + e2
S) + ρ (D/2) e2

S for ŝ = (1, 0). (15.98)

Setting the anisotropic viscosity according to

D < 2 A (15.99)

ensures kinetic energy is dissipated by friction.
The above considerations allow us to determine a covariant form of the stress

tensor. Summarizing the previous results, we first note that the isotropic contri-
bution takes the covariant form ρ A (2 emn − gmn ep

p), as shown by equation (15.60).
Second, the multiplier ∆ is proportional to the scalar emn τ

mn when A = 0, and so is
itself a scalar. Third, the rotation matrix R(ŝ) is determined by an orientation vector,
such as the local flow direction, which is coordinate invariant. Hence, a covariant
form of the stress tensor is given by

τmn = ρ A (2 emn − gmn ep
p) + ρD∆ Rmn(ŝ). (15.100)

We make use of this result in Section 15.7 when deriving the friction given by the
covariant divergence of the stress tensor.

15.7 Friction in generalized orthogonal coordinates

We now use the tensor analysis of Chapters 18 and 19, as summarized in Section
19.12, to derive the Laplacian frictional operator in generalized orthogonal coordi-
nates. This section can be easily skipped for those uninterested in general tensor
analysis.

15.7.1 Deformation rates

As noted in Section 15.5.2 and 15.6.2, the frictional stress tensor is a function of
two independent combinations of strain tensor elements. To determine the forms
of these deformation rates appropriate for general coordinates, let us reconsider the
local effects on kinetic energy of the isotropic frictional stress tensor

emn τ
mn
iso = ρ A (2 emn emn − gmn emn ep

p)

= ρ A [(e1
1 − e2

2)2 + 4 e1
2 e2

1]. (15.101)

We are thus motivated to introduce the deformation due to tension

eT = e1
1 − e2

2 = ex
x − ey

y (15.102)
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and shears
eS = 2 (h1/h2) e1

2 = 2 (h2/h1) e2
1 = 2 ex

y = 2 ey
x (15.103)

so that

−emn τ
mn = −ρ A [(eT)2 + (eS)2] + ρ (D/2) (eS cos 2θ− eT sin 2θ)2. (15.104)

Note that the Cartesian symbols x and y label physical components to tensors.∗

These deformation rates reduce to the forms given in Section 15.5.2 when using
Cartesian coordinates on a flat manifold.

To express the deformation rates in terms of the velocity fields, we note that the
strain tensor components are generally defined in terms of covariant derivatives of
the velocity field (e.g., Aris (1962)). From the manipulations presented in Section
15.10.2, we are led to the expressions valid for orthogonal transverse coordinates

eT = (dy) (u/dy),x − (dx) (v/dx),y (15.105)
eS = (dx) (u/dx),y + (dy) (v/dy),x (15.106)

These forms reduce to the Cartesian case of Section 15.3.1 when the generalized
orthogonal grid increments (dx, dy) = (h1 dξ1, h2 dξ2) can be removed from the
partial derivatives, as in the case of Cartesian coordinates on a flat space.

15.7.2 Stress tensor components

We now express the covariant form of the stress tensor (Section 15.6.2)

τmn = ρ A (2 emn − gmn ep
p) + ρD∆ Rmn(ŝ) (15.107)

in terms of the deformation rates. The (1, 1) element is given by

ρ−1 τ11 = A (2 e11 − g11 e1
1 − g11 e2

2) + D∆ R11

= g11 [A (e1
1 − e2

2) + D∆ R1
1], (15.108)

thus leading to the the physical component of the stress tensor

τxx = h1 h1 τ
11 = ρ (A eT + D∆ Rx

x) (15.109)

where the Cartesian symbols x and y label physical components to tensors. Like-
wise,

τ yy = h2 h2 τ
22 = ρ (−A eT + D∆ Ry

y). (15.110)

For the off-diagonal term, we have

ρ−1 τ12 = 2 A e12 + D∆ R12

= 2 (h1 h2)−1 A ex
y + (h2 h2)−1 D∆ R1

2 (15.111)

∗As discussed in Section 19.11.1, physical components of tensors have dimensions that are physi-
cally meaningful, whereas tensorial components of tensors can have arbitrary dimensions depending
on the choice of coordinates. Physical components do not transform in the convenient manner that
tensorial components do. Hence, it is best to work with the more abstract tensorial components for
mathematical manipulations. When reaching a point where one aims to clarify the dimensions and
physical content of a mathematical statement, and to clean up expressions prior to discretizization,
then it is relevant to introduce physical tensor components.
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thus leading to
τxy = ρ (A eS + D∆ Rx

y). (15.112)

In summary, we have the physical component version of the stress tensor given by

τ (m)(n) =
(

τxx τxy

τxy −τxx

)

= ρ

(

(A eT + D∆ Rx
x) (A eS + D∆ Rx

y)
(A eS + D∆ Ry

x) (−A eT + D∆ Ry
y)

)

(15.113)
and the rotation matrix

R(m)
(n) =

(

sin 2θ − cos 2θ
− cos 2θ − sin 2θ

)

. (15.114)

The parentheses notation is used to distinguish physical components of tensors,
which use the Cartesian labels x and y, from the more abstract tensorial compo-
nents, which use the numerals 1 and 2 (see Section 19.11.1 and footnote follow-
ing equation (15.104)). Note that when using the flow dependent orientation as in
Smith and McWilliams (2002), the orientation of the physical velocity components

u = (u, v) = (h1 u1, h2 u2) (15.115)

serves to orient the anisotropic portion of the stress tensor according to equation
(15.74), rather than the dimensionally ambiguous tensorial components (u1, u2). In
spherical coordinates

(u, v) = R (cosφ dλ/dt, dφ/dt) (15.116)

are the familiar zonal and meridional velocity components, with d/dt the material
time derivative.

15.7.3 The friction vector

The friction arising from horizontal and vertical deformations is given by the co-
variant divergence of the frictional stress tensor. From Section 19.3, we can write
the covariant divergence as

ρ Fm = τ̃mn
;n

= τ̃mn
,n + Γm

nc τ̃
nc + Γ n

nc τ̃
mc (15.117)

where τ̃mn is the frictional stress tensor, whose tranverse portion is given by τmn

(Section 15.3.4). For implementation in an ocean model, it is necessary to massage
equation (15.117). We provide details of these steps in Section 15.10.3. The final
results are the physical friction components

ρ Fx = (dy)−2 [(dy)2 τxx],x + (dx)−2 [(dx)2 τxy],y + (ρκ u,z),z (15.118)

ρ Fy = (dx)−2 [(dx)2 τ yy],y + (dy)−2 [(dy)2 τxy],x + (ρκ v,z),z, (15.119)

where
τxx = −τ yy. (15.120)

For Boussinesq fluids, the factors of density can be canceled on both sides of the ex-
pressions for friction, since ρ is formally replaced by the constant reference density
ρo.
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15.8 Dissipation functional

The purpose of this section is to introduce the dissipation functional correspond-
ing to the friction operator. This functional is fundamental to the method used to
discretize friction. The formalism is analogous to how the tracer variance is related
to the diffusion operator (see Griffies et al. (1998) and Section 14.1). A discussion
of the dissipation functional was given by Griffies and Hallberg (2000), Dukowicz
and Baumgardner (2002), and Smith and McWilliams (2002).

15.8.1 Motivation for the functional approach

There are many ways to discretize an operator. One approach is to take the con-
tinuum form and provide reasonable second order discretizations, with averaging
used whenever needed to place quantities in their proper grid position. This was
the common approach taken for friction in the past, with the continuum formu-
las of Bryan (1969) and Wajsowicz (1993), or Smagorinsky (1963, 1993), the starting
point. This direct approach is not always satisfying since it may produce a discrete
operator with undesirable properties. An example of the problems with naive dis-
cretizations is described by Griffies et al. (1998) for the neutral diffusion operator.

After having some success with the reformulation of neutral diffusion, in which
the diffusion operator was shown to be equivalent to the functional derivative of
the tracer variance, it was decided to attempt a similar approach for friction. As
shown in Section 15.8.2, the friction operator is equivalent to the functional deriva-
tive of the local kinetic energy dissipation. Both of these results follow from the
self-adjointness of the diffusion and friction operators. Through this connection,
the approach is to first discretize the appropriate functional. Thereafter, the func-
tional derivative of the discrete functional is used to derive the discretized friction
operator.

It is notable that discretization of the friction operator via first discretizing the
functional with second order numerics leads to the use of velocity triads. These
triads result because of the B-grid in which both velocity components are at a single
point. For second order discretization of the neutral diffusion operator, density
triads are fundamental (Griffies et al. (1998)). Triads emerge for diffusion since
all quantities of interest live on the tracer grid. Hence, discrete neutral diffusion,
derived from a functional, contains triads on any grid.

15.8.2 Defining the functional

As noted in Section 15.5.2 and 15.6.2, the effects on local kinetic energy dissipation
from horizontal deformations in the fluid take the form

−emn τ
mn = −ρ A (e2

T + e2
S) + 2ρD∆2, (15.121)

where
2∆ = eS cos 2θ− eT sin 2θ. (15.122)

The angle θ sets the orientation of the friction. The first term in equation (15.121) is
associated with transverse isotropic stresses, whereas the second term arises from
anisotropic stresses. Ensuring a sign-definite dissipation of kinetic energy requires

D < 2 A. (15.123)
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Integration over the full ocean domain leads to the positive semi-definite dissipation
functional

S ≡
∫

dV emn τ
mn =

∫

ρ dV [A (e2
T + e2

S)− 2 D∆2] (15.124)

where

dV =
√
G dξ1 dξ2 dz (15.125)

is the invariant volume element written using generalized horizontal coordinates
(Section 18.11), and

√
G = h1 h2 h3 is the square-root of the metric determinant (Sec-

tion 19.12). With the Traditional Approximation (Section 3.1), the vertical stretching
funtion h3 = 1.

As shown in this section, the functional derivative δS/δua is proportional to
the friction gab Fb. The connection between a dissipation functional and the friction
operator is afforded through the self-adjointness of the friction operator. This result
leads to a numerical discretization of friction that is ensured to dissipate kinetic
energy on the discrete lattice. The same approach for the tracer diffusion operator
is detailed in Section 14.1.2. Novelty is afforded in this section by the introduction
of vector velocities in the operator, instead of scalar tracers.

Two assumptions are needed to make the friction operator self-adjoint: (1) The
viscosity is functionally independent of the velocity field. (2) The flow satisfies
natural boundary conditions, of which no-slip is one. The Smagorinsky viscosity does
not satisfy the first assumption. Nonetheless, the functional approach leads to a
discretization inside of which one can employ the Smagorinsky viscosity. A similar
assumption was used to discretize the neutral diffusion operator when diffusing
active tracers, where in that case the operator is a nonlinear function of the active
tracers.

15.8.3 Performing the functional derivative

In this subsection, we perform the functional derivative, thus providing details to
the above statements. For this purpose, let us write the dissipation functional as

S =
∫

dV L (15.126)

with

L = emn τ
mn = ρ A (e2

T + e2
S)− 2ρD∆2. (15.127)

If we now consider a variation in the tensorial components to the velocity field

ua → ua + δua, (15.128)

with the underlying space-time geometry held fixed, then the dissipation functional
S changes according to

δ S =
∫

dV δL. (15.129)
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Since L = L[ua, ua
,b] is a functional of the velocity and its partial derivatives, its

variation leads to

δ S =
∫ √

G dξ1 dξ2 dz

[

δL
δua δua +

δL
δua

,b
δua

,b

]

=
∫

dξ1 dξ2 dz

[

√
G δL
δua δua + ∂b

(

√
G δL
δua

,b
δua

)

− ∂b

(

√
G δL
δua

,b

)

δua

]

,

(15.130)

where an integration by parts has been performed. The total derivative reduces to
a surface term, which vanishes when either

δua = 0 (15.131)

on all solid boundaries, or

n̂b (δL/δua
,b) δua = 0, (15.132)

where n̂b are components to the outward normal at the boundaries. These two con-
ditions define the natural boundary conditions mentioned above. If velocity, and
hence its variation, satisfies the no-slip condition, then δua = 0 on all boundaries
and the total derivative can be dropped. More general boundary conditions can
be derived from the second type of natural boundary condition, yet they are not
considered here since all B-grid ocean climate models employ no-slip on the side
boundaries.

With natural boundary conditions, variation of the dissipation functional takes
the form

δ S =
∫ √

G dξ1 dξ2 dz

[

δL
δua − G

−1/2 ∂b

(

√
G δL
δua

,b

)]

δua, (15.133)

thus leading to the functional derivative

(dV(y))−1 δ S
δua =

δL
δua − G

−1/2 ∂b

(

√
G δL
δua

,b

)

, (15.134)

where dV(y) is the volume element evaluated at the field point y. To reach this
result, it was necessary to use the identity

δua(x)
δub(y)

= dV(y) δa
b δ(x− y), (15.135)

where δ(x− y) is the Dirac delta-function. The delta-function has physical dimen-
sions of inverse volume L−3. Hence,

∫

dV(y) δ(x− y) = 1, (15.136)

so long as integration is over a domain containing the singular point x = y; other-
wise, the integral vanishes. The derivation of equation (15.134) should be familiar
to those having studied the Euler-Lagrange equations used in classical mechanics
(e.g., Marion and Thornton (1988)).
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15.8.4 The connection to friction

Now that the functional derivative of the dissipation S has been computed, it re-
mains to prove its connection to friction. For this purpose, we write a general vari-
ation of L as

δL = 2ρ [δeT (A eT + D∆ sin 2θ) + δeS (A eS − D∆ cos 2θ)]
= 2 (τxx δeT + τxy δeS) (15.137)

where the second step introduced the expressions for the stress tensor components
given in Section 15.7.2. Now recall the discussion in Section 15.10.2, where it was
shown that the horizontal tension can be written

eT = u1
,1 − u2

,2 + um ∂m ln(h1/h2) (15.138)

and the horizontal shearing strain is

eS =
h1

h2
u1

,2 +
h2

h1
u2

,1. (15.139)

Consequently, the deformation rates have functional derivatives given by

δeT

δua = δm
a ∂m ln(h1/h2) (15.140)

δeT

δua
,b

= δb
1 δ

1
a − δb

2 δ
2
a (15.141)

δeS

δua = 0 (15.142)

δeS

δua
,b

= (h1/h2) δb
2 δ

1
a + (h2/h1) δb

1 δ
2
a (15.143)

thus leading to

ρ−1 δL
δua = 2 τxx δm

a ∂m ln(h1/h2) (15.144)

ρ−1 δL
δua

,b
= 2 τxx (δb

1 δ
1
a − δb

2 δ
2
a) + 2 τxy

(

h1

h2
δ1

a δ
b
2 +

h2

h1
δ2

a δ
b
1

)

. (15.145)

For a = 1, these results yield

− 1
2 dV

δ S
δu1 = τxx ∂1 ln(h1/h2) +

1
h1 h2

∂b

(

h1 h2 δ
b
1 τ

xx + (h1/h2) δb
2 τ

xy
)

= h1

(

(dy)−2 [(dy)2 τxx],x + (dx)−2 [(dx)2 τxy],y

)

= ρ h1 Fx. (15.146)

The intermediate step utilized manipulations described in Section 15.10, and the
last step identified the friction vector (sans the piece arising from vertical shears)
given in Section 15.7.3. Hence, in general,

− 1
2 dV

δS
δu(a) = ρ F(a) (15.147)
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where the parentheses indicate the physical tensor components (see Section 19.11.1
for discussion of physical tensor components). This result establishes the desired
connection between the functional derivative of the dissipation functional, and the
friction operator. The discrete analog of this result is employed in Section 17.3 to
derive a discrete version of the friction operator.

15.9 Biharmonic friction

The previous derivations were all concerned with second order, or Laplacian, fric-
tion. It is often useful to consider another method of dissipating momentum through
use of a fourth order, or biharmonic, friction. As reviewed by Griffies and Hallberg
(2000), biharmonic friction acts more strongly on the small scales than the Lapla-
cian friction, and less strongly on the large scales. Each property is desirable, espe-
cially when aiming to realize some form of a quasi-geostrophic turbulent cascade
in which enstrophy cascades to the small scales and energy to the large scales. Bi-
harmonic friction is therefore commonly used in eddying ocean simulations.

The goal of this section is to derive the appropriate form of the biharmonic op-
erator that both dissipates kinetic energy yet does not introduce spurious sources of
angular momentum. As with the previous derivations, some work is necessary in
order to realize these properties on a sphere with a generally non-constant viscosity.

Recall that the quasi-hydrostatic approximation allowed for the separation of
the transverse or horizontal subspace from the vertical subspace. Consequently,
friction arising from the vertical gradient of the vertical strain, (κu,z),z, was iso-
lated from gradients in the horizontal deformations. As a result, the following
focuses solely on deriving the biharmonic operator for shears arising in the two-
dimensional transverse subspace. Hence, all labels in this section only run over the
transverse space m, n, p = 1, 2.

The utility of an anisotropic biharmonic friction operator has not been estab-
lished. It is trivial to implement an anisotropic biharmonic friction, once the for-
malism for the corresponding Laplacian operator is established. For brevity, the
following focuses on isotropic biharmonic friction.

15.9.1 General formulation

The general formulation of biharmonic friction is a straightforward extension of
the Laplacian friction given in the previous sections. What is done is to basically
iterate twice on the Laplacian approach. More precisely, the components Fm

B of the
biharmonic friction vector are derived from the covariant divergence∗

ρ Fm
B = Θmn

;n , (15.148)

where
Θmn = −ρ B (2 Emn − gmn Ep

p), (15.149)

B > 0 has units of L2 t−1/2, and ρ is set to the constant reference density ρo when
making the Boussinesq approximation. As shown in the next subsection, use of

∗Recall that all labels in this section run over m, n, p = 1, 2.
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the “square-root” biharmonic viscosity is prompted by the desire to dissipate ki-
netic energy. This detail only matters for cases with a non-constant viscosity. Θmn

has the same form as the stress tensor used for the isotropic second order friction
discussed in Section 15.7.2, except with a minus sign. The components of the sym-
metric “strain” tensor are given by

Emn =
1
2

(Fm;n + Fn;m). (15.150)

Fm are components to the friction vector determined through the covariant diver-
gence of the second order frictional stress tensor

ρ Fm = τmn
;n

= [Bρ (2 emn − gmn ep
p)];n (15.151)

as derived in the previous sections, where the only difference is that the viscosity
used for computing the stress tensor τmn is now set to B, and the dimensions on Fm

are L t−3/2.
This approach ensures that the biharmonic friction is derived from the diver-

gence of a symmetric tensor Θmn, hence ensuring a proper angular momentum
budget. Additionally, the computational work necessary to compute the Laplacian
friction is directly employed for the biharmonic friction. Finally, as shown in the
next subsection, this form for biharmonic friction also dissipates kinetic energy.

15.9.2 Effects on kinetic energy

The manipulations necessary to show that the biharmonic friction dissipates ki-
netic energy are analogous to those used for second order friction in Section 15.7.
As with that discussion, the relevant contribution from horizontal biharmonic fric-
tion is given by dV um Θ

mn
;n . Assuming either no-slip or no-normal Θ stress at the

boundaries brings this expression to the form
∫

dV um Θ
mn
;n = −

∫

dV Θmn emn

=
∫

dV ρ B [2 Emn emn − en
n Em

m]. (15.152)

For the product of traces, one has
∫

dV ρ B en
n Em

m =
∫

dV ρ B en
n Fm

;m

=
∫

dV [(ρ B en
n Fm);m − (ρ B en

n);m Fm]. (15.153)

The first term reduces to a boundary contribution, which vanishes if we assume the
second order friction Fm vanishes on the boundaries. For the contraction of the two
strain tensors, one has

2
∫

dV ρ B emn Emn = 2
∫

dV ρ B emn Fm ;n

= −2
∫

dV Fm (ρ B emn) ;n, (15.154)
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where again the boundary term (ρ B emn Fm);n was assumed to vanish. Combining
the two contributions leads to

∫

dV um Θ
mn
;n = −

∫

dV Fm [2 Bρ emn − gmn Bρ ek
k] ;n

= −
∫

dV ρ Fm Fm, (15.155)

which is non-positive, thus ensuring that kinetic energy is dissipated by the friction
for non-trivial flows.

If the viscosity B is distributed non-symmetrically, then kinetic energy is guar-
anteed to be dissipated by the biharmonic friction only for the special case of con-
stant viscosity. That is, in Cartesian coordinates, the operator∇z · B∇z (∇z · B∇zψ)
is dissipative for all B > 0, whereas ∇z · B2∇z (∇2

zψ) or ∇2
z (∇z · B2∇zψ) can be

proven to be dissipative only for constant B.

15.10 Some mathematical details

The purpose of this section is to present some of the steps in the derivation of the defor-
mation rates and Laplacian friction operator. The material may be easily skipped for those
uninterested in mathematical details. Recognizing that many of the equations are lengthy,
we use a smaller font for this section to allow for more compact expressions.

15.10.1 Salient results from Chapters 18 and 19

The infinitesimal distance between two points using orthogonal coordinates on the sphere
is given by

(ds)2 = gmn dξm dξn

= (h1 dξ1)2 + (h2 dξ2)2 + (h3 dξ3)2

= (dx)2 + (dy)2 + (dz)2, (15.156)

where we introduced the physical displacements

(dx, dy, dz) = (h1 dξ1, h2 dξ2, h3 dξ3) (15.157)

whose dimensions are length. Within the Traditional Approximation (Section 3.1), h3 = 1
and the transverse stretching functions h1, h2 are dependent only on the transverse coordi-
nates (ξ1,ξ2). In the special case of geographical spherical coordinates, (ξ1,ξ2) = (λ,φ)
are the dimensionless longitude and latitude, and (h1, h2) = R (cosφ, 1) are the stretching
functions with R the earth’s radius.

The determinant of the metric tensor gmn is positive definite. Using orthogonal coordi-
nates, the determinant is given by

G = g11 g22 g33 = (h1 h2 h3)2, (15.158)

where h3 = 1 with the Traditional Approximation. The metric determinant appears in
certain differential formulae, such as the invariant volume element (Section 18.11).

We will also find use in this section for the physical components to the transverse partial
derivative operator

(∂x, ∂y) = (h−1
1 ∂1, h−1

2 ∂2), (15.159)

and the physical velocity components

(u, v) = (h1 u1, h2 u2). (15.160)
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In spherical coordinates
(u, v) = R (cosφ dλ/dt, dφ/dt) (15.161)

are the familiar zonal and meridional velocity components, with d/dt the material time
derivative. Likewise,

(∂x, ∂y) = ((R cosφ)−1 ∂λ , (R)−1 ∂φ) (15.162)

are the familiar partial derivative operators. A full discussion of physical tensor compo-
nents using orthogonal coordinates is provided in Section 19.12.3. See also the summary
discussion in Section 19.12.

15.10.2 Details of the deformation rate derivation

The methods described in Chapters 18 and 19, as summarized above, lead to

eT = e1
1 − e2

2

= u1
;1 − u2

;2

= u1
,1 − u2

,2 + um (Γ 1
1m − Γ 2

2m)

= u1
,1 − u2

,2 +
1
2

um ∂m ln(g11/g22)

= (h2/h1)
(

u1 (h1/h2)
)

,1
− (h1/h2)

(

u2 (h2/h1)
)

,2

= h2 (u/h2),x − h1 (v/h1),y

= (dy) (u/dy),x − (dx) (v/dx),y (15.163)

where we eliminated the stretching functions h1 and h2 in the last step via the properties ar-
ticulated in Section 19.11.2. Additionally, Γ p

mn are the Christoffel symbols defined in Section
19.2.2. They can be written in terms of the metric tensor as (Section 19.4)

Γ
p
mn =

1
2

gpq(gqm,n + gqn,m − gmn,q). (15.164)

Proceeding in a similar manner leads to

(h1/h2) eS = 2 e2
1

= u2
;1 + g22 g11 u1

;2

= u2
,1 + Γ 2

1m um + g22 g11 (u1
,2 + Γ 1

2m um)

= u2
,1 +

1
2

g2d (g1d,m + gmd,1 − g1m,d) um + g22 g11 u1
,2

+
1
2

g22 g11 g1d (g2d,m + gmd,2 − g2m,d) um

= g22 (g11 u1
,2 + g22 u2

,1), (15.165)

which brings the horizontal shearing strain to

eS = h1 (u/h1),y + h2 (v/h2),x

= (dx) (u/dx),y + (dy) (v/dy),x (15.166)

15.10.3 Details of the friction derivation

To deduce the form of the friction vector appropriate for an ocean model, it is necessary to
massage equation (15.117). For this purpose, we start from the equivalent expression

ρ Fm = (
√
G)−1

(√
G τmn

)

,n
+ Γm

ab τ
ab, (15.167)
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which is valid for any metric. Its derivation is given in Section 19.6. We now exploit the
diagonal form of the metric tensor. First, the contraction Γ n

ab τ
ab is given by

Γm
ab τ

ab =
1
2

gmd (gad,b + gbd,a − gab,d)τ ab

= gmm (gam,b −
1
2

gab,m)τ ab

= gmm gmm,b τ
mb − 1

2
gmm gab,m τ

ab (15.168)

where there is no sum on the m label. Plugging this result into equation (15.167) for the
friction vector yields

ρ Fm = (gmm
√
G)−1

(

gmm
√
G τmn

)

,n
− 1

2
gmm gab,m τ

ab. (15.169)

Now recall that the transverse stress tensor considered here has a zero trace (Section 15.3.5),
which in general coordinates is given by the invariant expression

gmn τ
mn = τm

m = τ1
1 + τ2

2 = 0. (15.170)

Consequently, the generalized friction component with m = 1 is given by

ρ F1 = (g11
√
G)−1

(

g11
√
G τ1n

)

,n
− 1

2
g11 gab,1 τ

ab

= τ1n
,n + τ1n ∂n ln(g11

√
G)− τ11 ∂1 ln

√
g11 −

1
2
τ22 g11 g22,1

= τ11
,1 + τ11 ∂1 ln(g11

√
G) + (g11

√
G)−1(g11

√
G τ12 ),2 − τ11 ∂1 ln

√
g11 + τ11 ∂1 ln

√
g22

= τ11
,1 + τ11 ∂1 ln G + (g11

√
G)−1(g11

√
G τ12 ),2

= G−1 (G τ11),1 + (g11
√
G)−1(g11

√
G τ12 ),2

= [h1 (dy)2]−1 [(dy)2 h1 h1 τ
11],x + [h1 (dx)2]−1 [(dx)2 h1 h2 τ

12],y (15.171)

Multiplying by h1 = √g11 determines the physical component to the generalized zonal
friction

ρ Fx = (dy)−2 [(dy)2 τxx],x + (dx)−2 [(dx)2 τxy],y + (ρκ u,z),z (15.172)

where we reintroduced the contribution due to vertical strains, and the physical compo-
nents to the friction and stress tensor are given by

Fx = h1 F1 (15.173)

τxx = h1 h1 τ
11 (15.174)

τxy = h1 h2 τ
12. (15.175)

Letting x↔ y leads to the generalized meridional friction component

ρ Fy = (dx)−2 [(dx)2 τ yy],y + (dy)−2 [(dy)2 τxy],x + (ρκ v,z),z. (15.176)
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The purpose of this chapter is to discuss how to choose a viscosity for use in
the friction schemes. For simplicity, we consider only the Boussinesq expressions
here, though the ideas are relevant whether using Boussinesq or non-Boussinesq
equations.

16.1 Stability and resolution considerations

The purpose of this section is to review some of the basic numerical considerations
that constrain the viscosity.
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16.1.1 Balance between advection and diffusion

The representation of advection in a numerical model is nontrivial. In practice,
most concern has gone into providing some options for advecting tracers. Advec-
tion of momentum is still commonly done with the centered difference scheme used
by Bryan (1969). Centered advection of momentum provides for an energetically
consistent scheme (see Bryan (1969) and Griffies et al. (2003)), which in turn elimi-
nates the nonlinear instability of Phillips (1949).

The purpose of this section is to summarize the issues concerning the use of
centered differenced advection. Most notably, it will be shown that some amount
of mixing is needed in order to eliminate a computational mode. The arguments
are taken from Appendix B of Bryan et al. (1975).

Consider the steady state balance between one-dimensional advection and dif-
fusion

Uψ,x = Aψ,xx (16.1)

where U is a constant advection velocity, ψ is any field that is advected, including
velocity and tracers, and A is a Laplacian viscosity or diffusivity. Using centered
differences in space on a constant grid of size ∆, the finite difference counterpart to
this equation takes the form

(R− 2)ψi+1 + 4ψi − (R + 2)ψi−1 = 0, (16.2)

where

R =
U ∆

A
. (16.3)

When ψ is one of the velocity components, R is the grid Reynolds number, where
the qualifier “grid” is used since the length scale is the grid scale. When ψ is a
tracer, R is the grid Peclet number. In either case, R measures the ratio of advection
to diffusion.

A constant solves the finite difference equation (16.2). In addition, a power
solves it

ψi = Cξ i, (16.4)

where C is a constant and the i superscript on the right-hand side represents a
power. Substituting this function into the finite difference equation yields the quadratic
equation

(R− 2)ξ2 + 4ξ − (R + 2) = 0. (16.5)

The two real roots to this equation are

ξ = 1 (16.6)

ξ =
2 + R
2− R

. (16.7)

The first root is a constant as already mentioned. The second root is more relevant.
With ψi = Cξ i, if ξ i is negative, then ψi oscillates in space with a wave length
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given by the grid size. Such behaviour is not physical and so should be avoided.
Ensuring that R < 2, or

U ∆
A

< 2 (16.8)

keeps the second root positive and so eliminates the unphysical behaviour. There-
fore, with centered difference discretization of advection, it is necessary to also in-
clude a nonzero amount of viscosity or diffusivity sufficient to maintain this in-
equality.

For the case of tracers, various discretizations other than centered differences
can either reduce the need to include diffusivity, or will introduce diffusivity in
regions where the Peclet number does not satisfy the above constraint. For mo-
mentum, this constraint is always relevant since many ocean climate models still
use centered differences for momentum advection.

Experience has shown that if the Reynolds/Peclet number constraint is not sat-
isfied, then the model does not necessarily blow-up. Instead, the solution may have
a tendency to slowly degrade via the introduction of grid scale noise.

16.1.2 Linear stability of the diffusion equation

Convergence of the meridions with spherical coordinates makes it possible that
a horizontal mixing coefficient appropriate for the mid-latitudes is too large in the
high latitudes. In order to derive conservative constraints, it is sufficient to consider
the situation in Cartesian coordinates.

16.1.2.1 Laplacian mixing

Consider two dimensional Laplacian mixing in Cartesian coordinates

ψ,t = A (ψ,xx +ψ,yy) (16.9)

where A is the Laplacian viscosity. With a uniform grid, the discrete form of this
equation is given by

ψn+1
i, j = (1− 2σx − 2σy)ψn−1

i, j +σx (ψn−1
i+1, j +ψn−1

i−1, j) +σy (ψn−1
i, j+1 +ψn−1

i, j−1) (16.10)

where

σx = A
(

2∆t
(∆x)2

)

(16.11)

σy = A
(

2∆t
(∆y)2

)

. (16.12)

In time, this equation has the form of a forward discretization with a time step 2∆t. As
shown in Section (5-9) of Haltiner and Williams (1980), such forward time stepping
is necessary for stability of the diffusion equation. Note that the splitting incurred
by the leapfrog scheme can be removed by a Robert time filter.

A von Neumann stability analysis is sufficient for the present purposes. This
method determines the constraints necessary for numerical stability of an arbitrary
grid wave taking the form

ψn
i, j = Bn eiµ xi eiν y j , (16.13)



362 CHAPTER 16. HORIZONTAL VISCOSITY

where xi = i∆x, y j = j∆y, and µ and ν are arbitrary wavenumbers of dimension
inverse length. With this wave ansatz, the finite difference form of the diffusion
equation becomes

Bn+1 = ΩBn−1 (16.14)

where the amplification factor is

Ω = 1− 4σx sin2(µ xi/2)− 4σy sin2(ν y j/2). (16.15)

To ensure stability, −1 < Ω < 1 is required. So long as σx and σy are positive,
Ω < 1 is trivial to satisfy. The opposite inequality requires

σx sin2(µ xi/2) +σy sin2(ν y j/2) < 1/2. (16.16)

The most conservative form of this constraint occurs when the sine terms are unity,
in which case one finds

A <
1

4∆t

(

(∆x)−2 + (∆y)−2
)−1

. (16.17)

For one spatial dimension, this constraint implies

Aone−dim <
(∆s)2

4∆t
, (16.18)

where again 2∆t is the leap frog time step.
For two dimensions, again being conservative and so choosing ∆x = ∆y = ∆s,

yields the constraint

Atwo−dim <
(∆s)2

8∆t
. (16.19)

A final conservative approximation is to take ∆s as the minimum of ∆x and ∆y
within this equation.

The constraint discussed here can be likened to the CFL constraint placed on the
time step due to wave propagation. That is, a diffusive or viscous flux represents a
transfer of information across the grid. If this transfer occurs too fast relative to the
model’s time step, then the numerical scheme will go unstable. Correspondingly, in
one dimension, the constraint is less strong by a factor of 1/2. The increased restric-
tion placed on the two-dimensional problem is similar to the two dimensional CFL
constraint, as discussed in Section (5-6-7) of Haltiner and Williams (1980). Namely,
the effective size of the smallest grid wave is reduced through the addition of an
extra dimension, and so the constraint is stronger.

As with the CFL condition, experience has shown that if the linear diffusion
equation constraint is not satisfied, even mildly, then the model soon becomes
wildly unstable. The instability can be removed by either reducing the time steps
or reducing the mixing coefficient.
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16.1.2.2 Biharmonic mixing

The same type of analysis for the two-dimensional Cartesian biharmonic equation

ψ,t = −B (ψ,xxxx + 2ψ,xxyy +ψ,yyyy) (16.20)

where B > 0 is the biharmonic viscosity, leads to the biharmonic amplification
factor

Ω = 1− 16 [
√
σx sin2(µ ∆x/2) +√σy sin2(ν ∆y/2)]2, (16.21)

where now

σx = B
(

2∆t
(∆x)4

)

(16.22)

σy = B
(

2∆t
(∆y)4

)

. (16.23)

Restricting −1 < Ω < 1 implies

[
√
σx sin2(µ ∆x/2) +√σy sin2(ν ∆y/2)]2 < 1/8. (16.24)

This constraint is satisfied if the following more conservative constraint is satisfied

(
√
σx +√σy)2 < 1/8, (16.25)

or

B <
1

16∆t

(

(∆x)−2 + (∆y)−2
)−2

. (16.26)

The most conservative constraint is to set

B <
(∆s)4

64∆t
(16.27)

where ∆s is the minimum grid spacing.

16.1.3 Western boundary currents

Models with meridional boundaries have boundary currents. The Munk layer
(Munk (1950); Gill (1982)) is relevant for determining the width of the boundary
layer in MOM. As discussed by Bryan et al. (1975), the model must resolve this
layer with at least one grid point (optimally more than one grid point) in order to
maintain numerical stability. Under-resolution of the Munk layer shows up most
visibly in the vertically integrated velocity field (i.e., the barotropic streamfunction
when using the rigid lid, or the free surface height with the free surface). In ad-
dition, the work of Griffies et al. (2000b) emphasized the importance of having at
least two grid points in the Munk layer in order to minimize the level of spurious
diapycnal mixing associated with tracer advection.

With N grid points within the Munk layer, the Laplacian viscosity must satisfy

A > β(N ∆s
√

3/π)3, (16.28)
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where β = ∂y f = 2.28× 10−11(m s)−1 cosφ is the meridional gradient of the plan-
etary vorticity. Hence, for ∆s in meters

A(m2 s−1) > 3.82× 10−12(N ∆s)3 cosφ. (16.29)

For example, with ∆s = 100 × 103m at the equator, having one grid cell within
the Munk boundary layer requires a viscosity of 2.7 × 103m2 s−1, whereas with
∆s = 10× 103m, the viscosity must be larger than only 2.7× 101m2 s−1.

16.1.4 Computational modes on the B-grid

As discussed by Killworth et al. (1991), discretization of gravity waves on a B-grid
can admit a stationary grid scale checkerboard pattern (see also Messinger (1973)
and Janjić (1977) for atmospheric discussions). This pattern is associated with an
unsuppressed grid splitting that can be initiated through grid scale forcing, such as
topography. That is, the discrete equations admit a checkerboard null mode. This
null mode is seen quite frequently in the surface height field, since this field is typ-
ically updated without dissipation. Methods to smooth this field are discussed in
these references, as well as The MOM3 Manual of Pacanowski and Griffies (1999)
and the free surface paper of Griffies et al. (2001).

In addition to noise in the surface height, the computational mode typically is
seen when running with very low levels of viscosity. This mode manifests most
clearly as zig-zag velocity vectors. For example, such zig-zag patterns are visible
in quiescent regions of the model when using the Smagorinsky scheme with no
background viscosity.

For some modelers, such as the author, any sign of such unresolved grid-scale
power is unacceptable. Although the model may remain quite stable, enhanced
power at the grid scale arises from accepting too much unresolved structure at the
model’s smallest scale. There is no justification for considering such structure phys-
ically relevant. Instead, it is a numerical artifact. The extent to which this power
influences the larger scales depends on the situation. One egregious problem oc-
curs over long integration periods when noisy velocity fields enhance the levels of
spurious mixing of tracers (Griffies et al. (2000b)).

16.1.5 Considerations for viscosity on the sphere

On a sphere using spherical coordinates, the grid spacing in the zonal direction
changes according to cosφ. From many numerical and physical perspectives, it
is useful to employ square grids in which the latitudinal resolution is kept abreast
with the converging meridions

∆φ = cosφ∆λ. (16.30)

In this way, a grid cell is roughly square with squares becoming smaller as one
moves poleward.

Consistent with the desire to employ square grids, it might be useful to prescribe
a momentum friction that damps a particular grid scale anomaly with the same
time scale regardless of the position on the sphere. As shown in Section 16.1.6, the
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damping times for a constant viscosity used for Laplacian and biharmonic friction
in one Cartesian dimension is given by

τLap = (∆/2)2/A (16.31)

τBih = (∆/2)4/B, (16.32)

where ∆ is the grid spacing and B is the biharmonic viscosity. Preserving the damp-
ing time as ∆ changes on the sphere suggests letting A have a cos2φ dependence
and B have a cos4φ dependence.

Besides providing for a constant damping time, a latitudinally dependent fric-
tion can be prescribed that relieves the time step constraint given in Section 16.1.2
that ensues when employing a constant viscosity over the extent of the sphere. That
constraint becomes more restrictive on the size of A∆t when moving towards the
poles. Again, letting A have a cos2φ dependence relieves this constraint. Similar
stability considerations with biharmonic friction leads to a biharmonic coefficient
with cos4φ dependence.

The above considerations neglect the lower bound considerations given in Sec-
tions 16.1.1 and 16.1.3. Notably, if the viscosity gets too small, the flow becomes
numerically unstable and/or noisy. Therefore, as a compromise, instead of a cos2φ

dependence, the Laplacian viscosity is typically given a cosφ dependence

A = Ao cosφ, (16.33)

where Ao has no latitudinal dependence. This form for the viscosity is furthermore
not carried all the way to the pole. In practice, the cosφ dependence appears suf-
ficient to alleviate the time step restrictions arising from friction. For biharmonic
friction, the analogous viscosity is given by

B = Bo cos3φ, (16.34)

where Bo has no latitudinal dependence.
In summary, there are three main constraints placed on the viscosity. The Reynolds

number and Munk boundary layer constraint provide a lower bound on viscosity,
whereas the linear diffusion equation constraint provides an upper bound. In gen-
eral, modelers hope to reduce the viscosity to its lowest value consistent with these
constraints. The reason is that it allows the flow to become more advectively dom-
inant, which typically leads to more realistic simulations. Unfortunately, that effort
is often difficult to achieve, largely due to the Reynolds number and Munk con-
straints.

As proposed in Section 16.2, the Smagorinsky scheme provides the most general
means of satisfying each of the above three constraints with only one adjustable
dimensionless constant. This scheme, originally used in the GFDL ocean model
by Rosati and Miyakoda (1988), is currently being employed more frequently in
experiments at GFDL (see Griffies and Hallberg (2000) for a review).

16.1.6 Comparing Laplacian and biharmonic mixing

To understand the differences and similarities between Laplacian and biharmonic
dissipation, it is sufficient to consider the following linear evolution equations in
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one Cartesian space dimension (Semtner and Mintz (1977))

ψ,t = Alψ,xx (16.35)
ψ,t = −Bψ,xxxx (16.36)

where A is the Laplacian eddy coefficient and B is the biharmonic eddy coefficient.
Discretizing the Laplacian operator on a Cartesian grid of constant size ∆ yields

ψ,t = (Al/∆
2) (ψi+1 − 2ψi +ψi−1)

= (Al/∆
2)
(

D1/2 − D−1/2
)2
ψi (16.37)

where

Dmψi = ψi+m (16.38)

is a linear shift operator. A similar discretization of the biharmonic operator leads
to

ψ,t = −(B/∆4) (ψi+2 − 4ψi+1 + 6ψi − 4ψi−1 +ψi−2)

= −(B/∆4)
(

D1/2 − D−1/2
)4
ψi (16.39)

To garner a sense of how the two forms of dissipation compare, consider a monochro-
matic grid wave

ψ = c(t) e j k xi , (16.40)

where k is a wavenumber, j =
√
−1, and xi = i∆. For such a wave,

(D1/2 − D−1/2)e j k xi = 2 j sin(k∆/2) e j k xi (16.41)

(D1/2 − D−1/2)2e j k xi = −4 sin2(k∆/2) e j k xi . (16.42)

(D1/2 − D−1/2)4e j k xi = 16 sin4(k∆/2) e j k xi . (16.43)

As such, the evolution equations for this wave under the two forms of dissipation
are given by

d ln c(t)
dt

= −A
(

sin(k∆/2)
(∆/2)

)2

(16.44)

d ln c(t)
dt

= −B
(

sin(k∆/2)
(∆/2)

)4

. (16.45)

The solution to these equations is an exponential damping c(t) = c(0) e−t/τ , where
the inverse damping times are given by

τ−1
Lap(k) = A

(

sin(k∆/2)
∆/2

)2

(16.46)

τ−1
Bih(k) = B

(

sin(k∆/2)
∆/2

)4

. (16.47)
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The damping times are equal whenever

A = B
(

sin(k∆/2)
∆/2

)2

. (16.48)

For example, the smallest grid wave that can live on a discrete grid has size

λsmallest = 2∆, (16.49)

which means the wavenumber for this wave is

klargest = π/∆. (16.50)

In this case, sin(k∆/2) = 1, and so the damping times for this wave are given by

τLap = (∆/2)2/A (16.51)

τBih = (∆/2)4/B. (16.52)

This is the strongest damping available from either form of dissipation; waves of
smaller wavenumber, or longer wavelength, are less damped and so have larger τ .
For the k = π/∆ grid wave, if the dissipation coefficients satisfy

B = (∆/2)2 A, (16.53)

then the damping times are the same. For a typical mid-latitude eddy permitting
model, let ∆ = .25× cos(π/6)× 111× 1000 = 2.4× 104m. A biharmonic coeffi-
cient B = 1011m4/sec leads to a damping time of 2.4days for the smallest grid scale
waves. Relation (16.53) says that if A = 7× 102m2/sec, the Laplacian dissipation
leads to the same damping time.

16.2 Smagorinsky viscosity

As considered in ocean models, the Smagorinsky scheme provides expressions for
horizontal momentum viscosity. The viscosities are flow dependent and hence
are are nonlinear. The ideas and history of the method are nicely summarized in
Smagorinsky (1993). See also the paper by Griffies and Hallberg (2000) for a discus-
sion focusing on ocean modeling.

16.2.1 General ideas and motivation

Smagorinsky (1963, 1993) proposed that the effective Laplacian viscosity due to un-
resolved scales should be proportional to the resolved horizontal deformation rate
times the squared grid spacing. This scheme is a physically plausible parameter-
ization of the effects of three-dimensional isotropic turbulence, and it has found
much use in large-eddy simulations (e.g., see Galperin and Orszag (1993) for a
compendium). For large-scale geophysical fluid simulations, however, it has lit-
tle physical justification since the unresolved scales are dominated by quasi two-
dimensional geostrophic turbulence. For this reason, Leith (1968, 1996) proposed
an alternative approach based on two-dimensional turbulence. Leith’s viscosity is
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proportional to the horizontal gradient of the relative vorticity times the cubed grid
spacing. This approach has found some use in atmospheric models (e.g., Boer and
Shepherd (1983)), but it is not commonly used in ocean models.

The Smagorinsky scheme has found notable use in large-scale ocean models for
pragmatic reasons (e.g., Blumberg and Mellor (1987); Rosati and Miyakoda (1988);
Bleck and Boudra (1981); Bleck et al. (1992); Griffies and Hallberg (2000)). Firstly, it
is more convenient to compute than the Leith viscosity due to the smaller required
grid stencil, and because the deformation rate used to compute the Smagorinsky
viscosity is furthermore needed to compute the stress tensor. Secondly, as with
the Leith scheme, the Smagorinsky viscosity tailors the local dissipation to both
the local flow state and local grid resolution with only a single, nondimensional
adjustable parameter. If this parameter is properly chosen, the resulting viscos-
ity ensures that the flow respects the relevant numerical stability properties, even
when simulating multiple flow and grid regimes such as occur in realistic ocean
simulations.

16.2.2 The dimensionless Smagorinsky scaling parameter

In the Smagorinsky scheme, one introduces an adjustable dimensionless parameter
which is in practice used as a tuning parameter. It acts to set the overall magnitude
of the viscosity. In an attempt to bring the definition of this parameter into line with
that used by others, it is useful to present the following discussion, based largely
on that given in Section 1.9 of Smagorinsky (1993).

Recall that locally kinetic energy is dissipated by isotropic transverse frictional
stresses according to (see Section 15.7.1)

− emn τ
mn = Aρ (e2

T + e2
S) (16.54)

where eT and eS are the transverse deformation rates due to transverse strains (Sec-
tion 15.7.1). Smagorinsky chose his viscosity according to

A = (Υ/km)2 |E| (16.55)

where
|E| =

√

e2
T + e2

S (16.56)

is the total deformation rate whose units are inverse time. As written, the viscos-
ity depends in a nonlinear manner on the flow, and so is often termed a nonlinear
viscosity. The wavenumber km will be specified below. Υ is a dimensionless ad-
justable parameter. For certain flow regimes, it has been predicted by theories and
determined by experiments. Originally, Smagorinsky (1963) was motivated to set
Υ = 0.4, which is the value expected from wall boundary layer turbulence with 0.4
the von Karman constant. However, this value for Υ is not necessarily relevant for
an ocean model, where grid lengths less than a kilometer are rarely achieved. Con-
sequently, there is little theoretical justification for choosing one particular value of
Υ, and the modeler should consider tuning this parameter accordingly.

Notably, as emphasized by Griffies and Hallberg (2000), one practical advan-
tage of the Smagorinsky approach is that the value for Υ is often appropriate across
a broad range of grid sizes. That is, if simulating a flow with the Smagorinsky
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scheme, changing to a higher resolution may typically be done without changing
Υ, so long as similar flow regimes are present. Such is not the case in general when
tuning the dimensionful viscosity. Hence, the Smagorinsky approach helps to re-
duce the burden on retuning the model upon changing resolution.

In MOM, km is defined to be the largest resolvable wavenumber local to the
grid cell of interest. That is, for a given horizontal grid scale ∆s, 2∆s represents the
smallest explicitly resolvable wave length. The corresponding largest resolvable
wavenumber is

km = (2π)/(2∆s) = π/∆s. (16.57)

Hence, the viscosity is determined by

A = (Υ∆s/π)2|E|. (16.58)

This result differs by a factor of π from that employed by Smagorinsky (1963).
It is convenient to choose the grid spacing as

∆s ≡ 2∆x∆y
∆x + ∆y

. (16.59)

∆s reduces to ∆x when the grid spacing is equal in the two directions, 2∆x when
∆x << ∆y, and an appropriate value in between when the grid spacing is roughly
equal. This choice for ∆s has continuous derivatives, in contrast to alternative
choice of ∆s = min(∆x,∆y).∗

Note that when using the isotropic form of the stress tensor discussed in Section
15.5, it is important to employ a single transverse viscosity, not a separate one for
each of the two horizontal directions as suggested by Rosati and Miyakoda (1988).
The reason is that if two viscosities are introduced, then that would generally break
the trace-free and symmetric properties of the stress tensor discussed in Section
15.3. A general way to consistently introduce two horizontal viscosities is described
in Section 15.6, which follows the approach of Smith and McWilliams (2002). We
discuss the choice of these two viscosities in Section 16.4.

16.2.3 Choosing the scaling coefficient

There are at least three things to consider when deciding what value to use for the
scaling coefficient Υ. First, the viscosity used in a centered differenced momentum
advection scheme must be large enough so that the cell Reynolds number satisfies
the advection-diffusion constraint established in Section 16.1.1

R = U∆s/A < 2⇒ A > U∆s/2, (16.60)

where U is a velocity scale and ∆s the corresponding grid spacing. In order to get
a rough value for Υ based on this constraint, let |E| ≈ U/∆s, which means that the
Smagorinsky viscosity is roughly A ≈ (Υ/π)2 U ∆s. Forcing R < 2 implies that

Υ > π/
√

2 ≈ 2.2. (16.61)

∗Thanks to Bob Hallberg for this point.
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Actually, this estimate provides an upper bound on the viscosity realized with the
scheme, since ∆U ≈ U only in regions of strong horizontal shear. In other regions,
the nonlinear viscosity is significantly smaller.

The second consideration involves the western boundary layer considered in
Section 16.1.3. Again, with N grid points within the Munk layer and grid spacing
∆s in meter, the viscosity must satisfy

A(m2 s−1) > 3.82× 10−12(N ∆s)3 cosφ. (16.62)

In a 100× 103m resolution model, typical velocities are 0.1m s−1, and so the max-
imum Smagorinsky nonlinear viscosities are on the order of Υ2 × 103m2 s−1. With
Υ = 2.2, the model might be safely resolving the Munk layer since the regions
where the layer is formed is also where there are strong shears. A larger value of Υ,
however, might be necessary and so tests are appropriate.

The Munk boundary layer considerations can be computed prior to any model
computations since they do not involve flow properties. If the result of this calcu-
lation is that the needed Munk viscosity far excedes a reasonable estimate based on
a chosen Υ, such as the 2.2 based on the cell Reynolds number, then there are two
choices that can be made. The first is to run with a time-independent background
viscosity set large enough to satisfy the Munk boundary layer condition. If this
choice is made, there is little reason to employ the Smagorinsky scheme since the
computed viscosities are dominated by the background. The second choice is to
increase Υ so that the nonlinear viscosity satisfies the Munk boundary layer condi-
tion, at least for the cells within the boundary layer.

For constant viscosity, the main region in which the linear stability constraint

A <
(∆s)2

4∆t
(16.63)

becomes important is in regions of small grid spacing. For spherical grids, such
regions typically are in the high latitudes where meridions converge. Because the
Smagorinsky scheme has the proper grid stretching factors, it naturally produces
small viscosities in the high latitudes. That is, Υ generally need not have any lati-
tudinal dependence. This property is quite convenient for global models and any
model with variable resolution.

16.2.4 What about tracers?

For the dissipation of tracer variance through horizontal diffusion, Smagorinsky
(1963) assumed that a unit value for the horizontal turbulent Prandtl number∗. That
is, the horizontal viscosity and diffusivity are set equal. Such an approach has been
followed by some ocean modelers who use the Smagorinsky scheme.

Since geostrophic turbulence is the dominant mixing/stirring process in the
large-scale ocean, most modelers interested in the long term properties of ocean
tracers have not used the Smagorinsky algorithm for computing diffusivities for
horizontal tracer diffusion, isopyncal tracer diffusion, or thickness diffusion. In-
stead, alternative theories based on quasi-geostrophic turbulence are recommended.
Such theories are discussed in Chapters 11–14.

∗Recall that the Prandtl number is the ratio of the viscosity to diffusivity.
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One further practical shortcoming of the Smagorinsky approach for horizontal
tracer diffusion is that the horizontal Smagorinsky diffusivities tend to be largest
near boundaries, where the shears are largest. Hence, spurious upwelling at the
side boundaries caused by large horizontal diffusivities; i.e., the Veronis effect (Vero-
nis (1973, 1975)) can actually be enhanced with Smagorinsky tracer diffusivities
when used in geopotentially aligned horizontal diffusion operators.

For the above reasons, the Smagorinsky scheme is of use in ocean climate mod-
els only for use in determining the horizontal viscosity for dissipating kinetic en-
ergy through friction. It is not of use for determining tracer diffusivities at the grid
resolutions of interest for ocean climate models.

16.2.5 Biharmonic Smagorinsky friction

If the Smagorinsky scheme is employed along with the Laplacian mixing, then lin-
ear stability suggests that the Smagorinsky viscosity should satisfy

A <
(∆s)2

4∆t
, (16.64)

where ∆s ≡ (2∆x∆y)/(∆x + ∆y). A biharmonic viscosity should likewise satisfy

B <
(∆s)4

32∆t
. (16.65)

These results suggest setting the biharmonic viscosity from the Smagorinsky scheme
according to

B = A (∆s)2/8, (16.66)

where A is the Laplacian Smagorinsky viscosity. This scheme has the advantages of
the Laplacian Smagorinsky scheme while providing the enhanced scale selectivity
of a biharmonic operator.

16.3 Background viscosity

The Smagorinsky viscosity suffers from one problem necessitating the addition of
a nontrivial background viscosity. The problem is that in regions where the flow is
weak, the Smagorinsky viscosity can be quite small. Such regions may be next to
boundaries and so the boundary layer may go unresolved. In this case, the simu-
lated velocity field becomes quite noisy. Increasing the non-dimensional Smagorin-
sky parameter Υ reduces the noise, but at the cost of over-dissipating other regions
where the Smagorinsky viscosity is sufficient.

To alleviate this problem∗, we consider a grid scale dependent viscosity to set a
minimum allowable viscosity. The idea is to let the minimum Laplacian viscosity
be

Amin = UA ∆s, (16.67)

∗Eric Chassignet from the University of Miami suggested this approach to the author in 1999.
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where UA is a constant velocity scale and

∆s =
2∆x∆y
∆x + ∆y

. (16.68)

The value UA = 0.25m s−1 has been found effective for many purposes. When al-
lowing for multiple regimes of flow, such as with a more highly resolved equatorial
region, it may be necessary to provide an a priori spatial dependence to U.

For biharmonic viscosity,

Bmin = UB (∆s)3, (16.69)

where UB = 0.05m s−1 has been found to be useful for many applications with
eddying flows.

When comparing experiments run with Laplacian versus biharmonic operators,
it is often useful to use grid-scale dependent viscosities that damp grid-scale waves
at the same rate. As seen in Section 16.1.6, if B = (∆/2)2 A then the biharmonic
operator damps a grid wave the same as the corresponding Laplacian operator. If
each viscosity is set at its minimum given above, then

Bmin = UB (∆s)3 (16.70)

= (∆s)2 Amin/4 (16.71)

= (∆s)3 UA/4, (16.72)

thus leading to the correspondence between the velocity scales

UB = UA/4. (16.73)

16.4 Viscosities for anisotropic friction

The goal for choosing model viscosities is to satisfy the numerical constraints of
Section 16.1 without overly dissipating the simulation. The anisotropic friction op-
erator considered in Section 15.6 provides an added degree of freedom when spec-
ifying the transverse friction, and this extra degree of freedom can be exploited to
reduce the overall model dissipation. We provide here some guidelines for choos-
ing the isotropic viscosity A and anisotropic viscosity D. Similar considerations
were discussed by Smith and McWilliams (2002).

There are two main numerical constraints from Section 16.1. First, frictional
boundary layers must be resolved. Doing so requires enough friction be applied in
the cross-stream direction. Second, friction must be large enough to satisfy the grid
Reynolds number constraint. Doing so requires enough friction be applied in the
along-stream direction.

To see how these requirements translate into setting the viscosities, let us con-
sider the stress and friction associated with a flow aligned with the coordinate di-
rections. For this purpose, we recall the stress tensor is generally given by (Section
15.7.2)

τ (m)(n) = ρ

(

(A eT + D∆ sin 2θ) (A eS − D∆ cos 2θ)
(A eS − D∆ cos 2θ) (−A eT − D∆ sin 2θ)

)

(16.74)
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where the deformation rates are (Section 15.7.1)

eT = (dy) (u/dy),x − (dx) (v/dx),y (16.75)
eS = (dx) (u/dx),y + (dy) (v/dy),x (16.76)

the anisotropic term is (Section 15.6.2)

2∆ = eS cos 2θ− eT sin 2θ, (16.77)

and θ sets the orientation of the friction, with the flow dependent orientation of
Smith and McWilliams (2002) given by

u = |u| (cosθ, sinθ). (16.78)

Consider friction oriented so that θ = π/2, which occurs for the flow dependent
case when currents are moving in the generalized meridional direction, then 2∆ =
−eS and the stress tensor is

τ (m)(n) = ρ

(

A eT (A− D/2) eS
(A− D/2) eS −A eT

)

. (16.79)

For simplicity, now assume Cartesian coordinates on a plane with a Boussinesq
fluid and constant viscosities. Doing so leads to the friction vector

Fx = (A + D/2) u,xx + (A− D/2) u,yy − (D/2) ∂x∇ · u (16.80)
Fy = (A + D/2) v,yy + (A− D/2) v,xx − (D/2) ∂y∇ · u. (16.81)

With a small horizontal divergence ∇ · u, the last term in these expressions is sub-
dominant to the first and second terms. For meridional flow away from boundaries,
the along-stream viscosity

Aalong = A + D/2 (16.82)

must satisfy the grid Reynolds number constraint. For meridional flow aligned
with a meridional boundary, the cross-stream viscosity

Across = A− D/2 (16.83)

must satisfy the Munk boundary layer constraint. Finally, recall from Section 15.6.2
that D < 2 A is required to ensure that kinetic energy is dissipated by the friction
operator (see equation (15.99)), which means that the cross-stream viscosity can
never go negative.
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The purpose of this chapter is to formulate a discrete version of the horizontal
momentum friction operators derived in Chapter 15. The basis for this discretiza-
tion is the functional approach described in Section 15.8. This chapter will appeal
to those interested in implementing friction in a B-grid ocean model. Notably, the
formulation on C-grid models is simpler, as mentioned by Griffies and Hallberg
(2000).

As with our discussion of the discrete neutral physics operator in Chapter 14,
the presentation here introduces grid labels on fields living on a discrete lattice. Ex-
plicit sums and averages are also used in most places rather than choosing amongst
the more elegant alternatives. We choose this more explicit notation since it eads
to less ambiguity for the reader. Furthermore, such is ultimately required by the
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numericist when translating an algorithm into computer code. Experience has
shown that having the algorithm written nearly in its “full glory” in LATEXreduces
the chances for bugs to penetrate the computer code. Such is especially crucial for
complicated schemes such as the one documented in this chapter as well as Chap-
ter 14. Hence, for pedogogical and “quality control” reasons, we prefer the explicit
grid-label notation. Recognizing that this approach can lead to somewhat lengthy
equations, we use a relatively small font for the remainder of this chapter to allow
for visually more compact expressions.

17.1 Comments on the notation

Chapter 15 established the form of friction within the context of the unaveraged equations
of motion derived in Chapter 3. Such is strictly a mis-representation of the unaveraged
equations, since they employ dissipation operators due to molecular friction, not the sub-
grid-scale (SGS) friction of focus here. Nonetheless, we took this approach for purposes
of tidiness. Now that we are transferring the results from Chapter 15 to model fields, we
follow the mapping given by Table 6.1, whereby v → vρ for the non-Boussinesq fluid, and
v = vρ for the Boussinesq fluid. Notably, this mapping means that it is the velocity vρ =
v (ρo/ρ) that is used to construct the friction operator in the non-Boussinesq model, not the
velocity v. In addition, the friction operator in the model represents a discrete version of
the SGS momentum flux

〈F̃(u)
sgs 〉 → F(u)

model. (17.1)

When considering model implementations, factors of density reduce to their Boussinesq
value ρo, which simplifies the numerical treatment in the non-Boussinesq case.

In the present chapter, in order to maintain a minimum set of labels, we are not careful
to abide by the above notation for the velocity. Hence, as emphasized by Greatbatch et al.
(2001), it is important to recognize that when const ructing friction within a non-Boussinesq
model, we use vρ instead of v to ensure that kinetic energy is dissipated.

17.2 Summary of the various formulations

On a horizontal plane with second order numerics, the discrete second order Laplacian
forms a 5-point stencil. This stencil precludes computational modes, and hence always acts
to smooth a field. It is for this reason that many ocean models employ a Laplacian operator
for dissipating momentum in order to satisfy various numerical stability requirements.

On a sphere and in the presence of non-homogeneous grids, boundaries, and various
flow regimes, a Laplacian operator using a constant viscosity is often sub-optimal in the
sense that it may over-dissipate the simulated flow. The paper by Griffies and Hallberg
(2000) motivates the consideration of the Smagorinsky viscosity (Section 16.2) in either a
second order (Laplacian) or fourth order (biharmonic) friction operator. Additional consid-
erations necessary to preserve angular momentum on a sphere warrant added sophistica-
tion to the operator beyond that of the familiar Cartesian form of the Laplacian operator.

Many ocean models handle the added complications due to sphericity and non-constant
viscosities in two basic ways. First, there are the formulae of Bryan (1969), Wajsowicz
(1993), Smith et al. (1995), and Murray and Reason (2002). In this approach, friction is
written as a “Laplacian plus frictional metric” form. The Laplacian piece is the spherical
coordinate form of a Laplacian operator acting on a component of the velocity, as if the ve-
locity component was a scalar field. The frictional metric piece is an added term accounting
for the fact that velocity is a vector, not a scalar. The friction metric term arises for two gen-
eral reasons: (1) the sphericity of the earth (Sections 3.10.2 and 3.10.3), and (2) non-constant
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viscosities (Section 15.5.4). Without the frictional metric term, the corresponding stress ten-
sor would not be symmetric, thus allowing friction to introduce spurious torques and thus
compromising the angular momentum budgets. Bryan (1969) used a friction metric appro-
priate for constant viscosities, Wajsowicz (1993) showed how it is modified for use with
non-constant viscosities, and Smith et al. (1995) and Murray and Reason (2002) generalized
these results to arbitrary orthogonal coordinates.

The frictional metric term is cumbersome to discretize, especially with generalized or-
thogonal coordinates. Additionally, its discretization on a B-grid admits computational
modes. Hence, the frictional metric is sometimes ignored, as in Cox (1984). If maintaining
the metric term, the presence of the scalar Laplacian appears to render the computational
modes harmless. Nonetheless, the formulation is not satisfying since ideally no part of the
friction operator should admit computational modes. An alternative formulation is there-
fore desired.

A second way to discretize the friction operator is to apply the tensor formalism of
Smagorinsky (1963, 1993) in the process of discretizing the Smagorinsky nonlinear viscos-
ity method. This was the approach of Rosati and Miyakoda (1988). In the continuum,
this approach is equivalent to Wajsowicz (1993) (see Section 17.4 for details). Yet there are
differences on the discrete lattice. Furthermore, the tensor formalism is considerably more
concise, and the ability to generalize to arbitrary orthogonal curvilinear coordinates is more
elegant. It is for these reasons that we prefer this method here.

The following history of friction in the GFDL ocean code helps to summarize the pre-
vious discussion:

• Bryan (1969): Scalar Laplacian plus metric term for constant viscosity.

• Cox (1984): Omitted metric terms for constant viscosity.

• Rosati and Miyakoda (1988): Smagorinsky scheme in which friction, with a non-
constant viscosity, was determined from derivatives of the stress tensor components.

• Pacanowski et al. (1991) (MOM1): Reintroduced metric terms for constant viscosity.

• Pacanowski (1995) and Pacanowski and Griffies (1999) (MOM2 and MOM3): Scalar
Laplacian plus constant viscosity metric terms of Bryan (1969) and non-constant vis-
cosity terms of Wajsowicz (1993).

• Griffies et al. (2003) (MOM4): Tensor formalism with general orthogonal coordinates
discretized based on a functional.

17.3 Horizontal friction discretization

The purpose of this section is to discretize the horizontal friction operator. Much here fol-
lows the functional approach used for the neutral diffusion discretization detailed in Chap-
ter 14. However, the present discussion is simpler because we need to only discretize a
two dimensional (x-y plane) operator, and because there are no subtleties associated with
neutral directions. The approach here is therefore a straightforward application of the func-
tional formalism described in Section 15.8.

17.3.1 General form of the discrete dissipation functional

The discrete dissipation functional takes the form

S = ∑
i, j

12

∑
n=1

V(n) [A(n) (e2
T(n) + e2

S(n))− 2 D(n)∆2(n)] ≡∑
i, j
Si, j. (17.2)
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Note that this functional is relevant for both the Boussinesq and non-Boussinesq fluids due
to the mapping (17.1) as derived in Section 6.6. Figure 17.1 illustrates the nearest neighbor
stencil used for discretizing the dissipation functional using second order numerics. The
summation n = 1, 12 arises from the 12 subcells to which the velocity point Ui, j contributes
when discretizing the functional. V(n) are the volumes of each of the subcells, A(n) are
the viscosities, and eT(n), eS(n), and ∆(n) are the corresponding tensions, strains, and
anisotropic contribution, respectively.

For a particular velocity grid cell Ui, j,k, the physical component of the friction vector
acting at the velocity cell Ui, j,k is given by the discrete functional derivative (see Section
15.8.4)

−F(b)
i, j =

1
2 VU

i, j

∂Si, j

∂(u(b))i, j

=
1

VU
i, j

12

∑
n=1

V(n)×

(

A(n) eT(n)
∂eT(n)

∂(u(b))i, j
+ A(n) eS(n)

∂eS(n)
∂(u(b))i, j

− 2 D(n)∆(n)
∂∆(n)

∂(u(b))i, j

)

=
1

ρo VU
i, j

12

∑
n=1

V(n)

(

∂eT(n)
∂(u(b))i, j

τxx(n) +
∂eS(n)

∂(u(b))i, j
τxy(n)

)

. (17.3)

In this equation, b = 1, 2 labels the generalized zonal and meridional directions, the discrete
depth label k was dropped since all points are at the same depth level,

(

(u(1))i, j, (u(2))i, j

)

= (ui, j, vi, j) (17.4)

are physical components of the velocity vector,

VU
i, j,k = dxui, j dyui, j dhui, j,k (17.5)

is the velocity cell volume,

τxx(n) = ρo [A(n) eT(n) + D(n)∆(n) sin 2θ] (17.6)
τxy(n) = ρo [A(n) eS(n)− D(n)∆(n) cos 2θ] (17.7)

are the stress tensor components, and the orientation angle θ determines the orientation of
the friction according to the discussion in Section 15.6.1. In the remainder of this section,
we perform the discrete functional derivatives and then manipulate the results into a tidy
expression for the discrete friction operator.

17.3.2 Grid cell distances and subcell volumes

Enumerating the 12 quarter cell volumes constitutes an important part of the discretization.
We assume knowledge of the distance along each of the four sides of a velocity and tracer
cell, as well as the distance from the velocity and tracer points to the sides of their respec-
tive cells. Although nonuniform grids with general coordinates do not allow an exact (i.e.,
analytically exact) area calculation, the horizontal area of the quarter cells is well approxi-
mated using this information. Even so, for the purpose of discretizing friction, there is no
reason to take pains to compute a very accurate quarter cell area. Indeed, our aim is to re-
alize the dissipative property of friction with minimal computational expense. Hence, we
make the simplification that the volume of a quarter cell is equal to one-quarter the volume
of the corresponding velocity cell. In summary, we employ the following grid information
(refer to Figure 17.1):
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• The longitudinal spacing, in meters, between Ui, j and Ui+1, j is dxuei, j. The latitudinal
spacing, in meters, between Ui, j and Ui, j+1 is dyuni, j.

• The volume of a quarter cell is taken equal to one-quarter the volume of the velocity
cell where the quarter cell lives. For example, quarter cells 1,2,3,4 live inside velocity
cell Ui, j,k and so have volume

(1/4) VU
i, j,k = (1/4) dxui, j dyui, j dhui, j,k , (17.8)

whereas quarter cells 5,6 live inside velocity cell Ui+1, j,k and so have volume

(1/4) VU
i+1, j,k = (1/4) dxui+1, j dyui+1, j dhui+1, j,k . (17.9)

In summary, the volumes of the 12 quarter cells are taken to be

V(1) = V(2) = V(3) = V(4) = (1/4) VU
i, j,k

V(5) = V(6) = (1/4) VU
i+1, j,k

V(7) = V(8) = (1/4) VU
i−1, j,k

V(9) = V(10) = (1/4) VU
i, j+1,k

V(11) = V(12) = (1/4) VU
i, j−1,k

(17.10)
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Figure 17.1: Stencil for the discrete horizontal friction functional. The 12 quarter
cells each contain contributions to the functional from the central velocity point
Ui, j.
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17.3.3 Derivative operators

The horizontal finite difference derivative operators are given by

δxui, j =
ui+1, j − ui, j

dxuei, j
(17.11)

δyui, j =
ui, j+1 − ui, j

dyuni, j
. (17.12)

The distances dxuei, j and dyuni, j represent the zonal and meridional distances between
the velocity points. All metric stretching factors are absorbed into these grid distances
according to the discussion in Section 19.12.4.

17.3.4 Tension and strain for the subcells

We must decide what form of the tension and strain to discretize. Our goal is to work with
the discretization involving the least amount of grid factors in order to minimize computa-
tional expense. The first forms are more symmetric

eT = dy (u/dy),x − dx (v/dx),y (17.13)
eS = dx (u/dx),y + dy (v/dy),x (17.14)

and lead to a highly symmetric and compact form for the discretized friction operator (see
below), directly analogous to the continuum form given by equations (15.118) and (15.119).
The second forms isolate the Cartesian expression

eT = u,x − v,y + v ∂y ln dx− u ∂x ln dy (17.15)
eS = u,y + v,x − u ∂y ln dx− v ∂x ln dy. (17.16)

The second forms require less computation since the metric terms

(MT)i, j = −ui, j (∂x ln dy)i, j + vi, j (∂y ln dx)i, j (17.17)

(MS)i, j = −ui, j (∂y ln dx)i, j − vi, j (∂x ln dy)i, j (17.18)

are common to each of the four surrounding triads, and the following grid factors can be
computed at the start of the integration

dh1dyi, j = (∂y ln dx)i, j (17.19)

dh2dxi, j = (∂x ln dy)i, j. (17.20)

Hence, we choose the first form of the deformation rates to develop the discrete friction,
and the second form to evaluate the deformation rates within the discrete friction. For
purposes of completeness, we display both discrete forms of the deformation rates here.
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The first form for tension in the 12 subcells is

eT(1) = dyuei−1, j δx (ui−1, j/dyui−1, j)− dxuni, j δy (vi, j/dxui, j)

eT(2) = dyuei, j δx (ui, j/dyui, j)− dxuni, j δy (vi, j/dxui, j)

eT(3) = dyuei−1, j δx (ui−1, j/dyui−1, j)− dxuni, j−1 δy (vi, j−1/dxui, j−1)

eT(4) = dyuei, j δx (ui, j/dyui, j)− dxuni, j−1 δy (vi, j−1/dxui, j−1)

eT(5) = dyuei, j δx (ui, j/dyui, j)− dxuni+1, j δy (vi+1, j/dxui+1, j)

eT(6) = dyuei, j δx (ui, j/dyui, j)− dxuni+1, j−1 δy (vi+1, j−1/dxui+1, j−1)

eT(7) = dyuei−1, j δx (ui−1, j/dyui−1, j)− dxuni−1, j δy (vi−1, j/dxui−1, j)

eT(8) = dyuei−1, j δx (ui−1, j/dyui−1, j)− dxuni−1, j−1 δy (vi−1, j−1/dxui−1, j−1)

eT(9) = dyuei−1, j+1 δx (ui−1, j+1/dyui−1, j+1)− dxuni, j δy (vi, j/dxui, j)

eT(10) = dyuei, j+1 δx (ui, j+1/dyui, j+1)− dxuni, j δy (vi, j/dxui, j)

eT(11) = dyuei−1, j−1 δx (ui−1, j−1/dyui−1, j−1)− dxuni, j−1 δy (vi, j−1/dxui, j−1)

eT(12) = dyuei, j−1 δx (ui, j−1/dyui, j−1)− dxuni, j−1 δy (vi, j−1/dxui, j−1)

(17.21)

and the first form for strain is

eS(1) = dxuni, j δy (ui, j/dxui, j) + dyuei−1, j δx (vi−1, j/dyui−1, j)

eS(2) = dxuni, j δy (ui, j/dxui, j) + dyuei, j δx (vi, j/dyui, j)

eS(3) = dxuni, j−1 δy (ui, j−1/dxui, j−1) + dyuei−1, j δx (vi−1, j/dyui−1, j)

eS(4) = dxuni, j−1 δy (ui, j−1/dxui, j−1) + dyuei, j δx (vi, j/dyui, j)

eS(5) = dxuni+1, j δy (ui+1, j/dxui+1, j) + dyuei, j δx (vi, j/dyui, j)

eS(6) = dxuni+1, j−1 δy (ui+1, j−1/dxui+1, j−1) + dyuei, j δx (vi, j/dyui, j)

eS(7) = dxuni−1, j δy (ui−1, j/dxui−1, j) + dyuei−1, j δx (vi−1, j/dyui−1, j)

eS(8) = dxuni−1, j−1 δy (ui−1, j−1/dxui−1, j−1) + dyuei−1, j δx (vi−1, j/dyui−1, j)

eS(9) = dxuni, j δy (ui, j/dxui, j) + dyuei−1, j+1 δx (vi−1, j+1/dyui−1, j+1)

eS(10) = dxuni, j δy (ui, j/dxui, j) + dyuei, j+1 δx (vi, j+1/dyui, j+1)

eS(11) = dxuni, j−1 δy (ui, j−1/dxui, j−1) + dyuei−1, j−1 δx (vi−1, j−1/dyui−1, j−1)

eS(12) = dxuni, j−1 δy (ui, j−1/dxui, j−1) + dyuei, j−1 δx (vi, j−1/dyui, j−1).

(17.22)

The second form for tension is

eT(1) = δx ui−1, j − δy vi, j + (MT)i, j

eT(2) = δx ui, j − δy vi, j + (MT)i, j

eT(3) = δx ui−1, j − δy vi, j−1 + (MT)i, j

eT(4) = δx ui, j − δy vi, j−1 + (MT)i, j

eT(5) = δx ui, j − δy vi+1, j + (MT)i+1, j

eT(6) = δx ui, j − δy vi+1, j−1 + (MT)i+1, j

eT(7) = δx ui−1, j − δy vi−1, j + (MT)i−1, j

eT(8) = δx ui−1, j − δy vi−1, j−1 + (MT)i−1, j

eT(9) = δx ui−1, j+1 − δy vi, j + (MT)i, j+1

eT(10) = δx ui, j+1 − δy vi, j + (MT)i, j+1

eT(11) = δx ui−1, j−1 − δy vi, j−1 + (MT)i, j−1

eT(12) = δx ui, j−1 − δy vi, j−1 + (MT)i, j−1

(17.23)
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and the second form for strain is
eS(1) = δy ui, j + δx vi−1, j + (MS)i, j

eS(2) = δy ui, j + δx vi, j + (MS)i, j

eS(3) = δy ui, j−1 + δx vi−1, j + (MS)i, j

eS(4) = δy ui, j−1 + δx vi, j + (MS)i, j

eS(5) = δy ui+1, j + δx vi, j + (MS)i+1, j

eS(6) = δy ui+1, j−1 + δx vi, j + (MS)i+1, j

eS(7) = δy ui−1, j + δx vi−1, j + (MS)i−1, j

eS(8) = δy ui−1, j−1 + δx vi−1, j + (MS)i−1, j

eS(9) = δy ui, j + δx vi−1, j+1 + (MS)i, j+1

eS(10) = δy ui, j + δx vi, j+1 + (MS)i, j+1

eS(11) = δy ui, j−1 + δx vi−1, j−1 + (MS)i, j−1

eS(12) = δy ui, j−1 + δx vi, j−1 + (MS)i, j−1.

(17.24)

17.3.5 Functional derivative of eT

Choosing to work with the discretized first form of tension (equation (17.13)) leads to the
functional derivative of the tension within the 12 subcells

∂eT(1)
∂(u(b))i, j

=
dyuei−1, j

dxuei−1, j

δ1
b

dyui, j
+

dxuni, j

dyuni, j

δ2
b

dxui, j

∂eT(2)
∂(u(b))i, j

= −
dyuei, j

dxuei, j

δ1
b

dyui, j
+

dxuni, j

dyuni, j

δ2
b

dxui, j

∂eT(3)
∂(u(b))i, j

=
dyuei−1, j

dxuei−1, j

δ1
b

dyui, j
−

dxuni, j−1

dyuni, j−1

δ2
b

dxui, j

∂eT(4)
∂(u(b))i, j

= −
dyuei, j

dxuei, j

δ1
b

dyui, j
−

dxuni, j−1

dyuni, j−1

δ2
b

dxui, j

∂eT(5)
∂(u(b))i, j

= −
dyuei, j

dxuei, j

δ1
b

dyui, j
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∂(u(b))i, j

= −
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∂eT(7)
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=
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δ1
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=
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=
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∂(u(b))i, j

=
dxuni, j
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= −
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(17.25)
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17.3.6 Functional derivative of eS

Choosing to work with the discretized first form of strain (equation (17.13)) leads to the
functional derivative of the strain within the 12 subcells

∂eS(1)
∂(u(b))i, j

= −
dxuni, j

dyuni, j

δ1
b

dxui, j
+

dyuei−1, j

dxuei−1, j

δ2
b

dyui, j

∂eS(2)
∂(u(b))i, j

= −
dxuni, j

dyuni, j

δ1
b

dxui, j
−

dyuei, j

dxuei, j

δ2
b

dyui, j

∂eS(3)
∂(u(b))i, j

=
dxuni, j−1

dyuni, j−1

δ1
b

dxui, j
+

dyuei−1, j

dxuei−1, j

δ2
b

dyui, j

∂eS(4)
∂(u(b))i, j

=
dxuni, j−1

dyuni, j−1

δ1
b

dxui, j
−

dyuei, j

dxuei, j

δ2
b

dyui, j

∂eS(5)
∂(u(b))i, j

= −
dyuei, j

dxuei, j

δ2
b

dyui, j

∂eS(6)
∂(u(b))i, j

= −
dyuei, j

dxuei, j

δ2
b

dyui, j

∂eS(7)
∂(u(b))i, j

=
dyuei−1, j

dxuei−1, j

δ2
b

dyui, j

∂eS(8)
∂(u(b))i, j

=
dyuei−1, j

dxuei−1, j

δ2
b

dyui, j

∂eS(9)
∂(u(b))i, j

= −
dxuni, j

dyuni, j

δ1
b

dxui, j

∂eS(10)
∂(u(b))i, j

= −
dxuni, j

dyuni, j

δ1
b

dxui, j

∂eS(11)
∂(u(b))i, j

=
dxuni, j−1

dyuni, j−1

δ1
b

dxui, j

∂eS(12)
∂(u(b))i, j

=
dxuni, j−1

dyuni, j−1

δ1
b

dxui, j
.

(17.26)

17.3.7 Tidy form for the discretized friction

Let us focus first on the zonal friction with b = 1. Using the volumes enumerated in Section
17.3.2, and dropping the k label since it is the same for all terms, we have for the tension

−
12

∑
n=1

V(n)τxx(n)
∂eT(n)

∂(u(1))i, j

=

(

dyuei, j

4 dxuei, j dyui, j

)

(

[τxx(5) + τxx(6)] VU
i+1, j + [τxx(2) + τxx(4)] VU

i, j

)

−
(

dyuei−1, j

4 dxuei−1, j dyui−1, j

)

(

[τxx(1) + τxx(3)] VU
i, j + [τxx(7) + τxx(8)] VU

i−1, j

)

. (17.27)

Figure 17.1 indicates that a velocity point Ui, j is associated with four triads, each of which is
used to construct a tension and strain along with a viscosity. Such arrangement motivates



384 CHAPTER 17. DISCRETE B-GRID HORIZONTAL FRICTION

the following notation (see Figure 17.2):

(1, 1) = northeast triad
(0, 1) = northwest triad
(0, 0) = southwest triad
(1, 0) = southeast triad

(17.28)

(1,1)(0,1)

(0,0) (1,0)

y

x

Figure 17.2: Notation for the quadrants surrounding a velocity point.

With this notation,

−
12

∑
n=1

V(n) τxx(n)
∂eT(n)

∂(u(1))i, j
=

(

dyuei, j

4 dxuei, j dyui, j

)

1

∑
ip=0

VU
i+ip, j

1

∑
jq=0

(τxx)(1−ip, jq)
(i+ip, j)

−
(

dyuei−1, j

4 dxuei−1, j dyui, j

)

1

∑
ip=0

VU
i−1+ip, j

1

∑
jq=0

(τxx)(1−ip, jq)
(i−1+ip, j).

(17.29)

The two terms on the right hand side are centered on the east and west faces, respectively,
of the Ui, j velocity cell. Consequently, we introduce the finite difference derivative operator
to yield

−
12

∑
n=1

V(n)τxx(n)
∂eT(n)

∂(u(1))i, j
=

(

dxui, j

4 dyui, j

)

δx

[dyuei−1, j

dxuei−1, j

1

∑
ip=0

VU
i−1+ip, j

1

∑
jq=0

(τxx)(1−ip, jq)
(i−1+ip, j)

]

.

(17.30)
Dividing by the velocity cell volume VU

i, j = dxui, j dyui, j dhui, j leads to

−
(

1
VU

i, j

)

12

∑
n=1

V(n)τxx(n)
∂eT(n)

∂(u(1))i, j

=

(

1
4 dhui, j (dyui, j)2

)

δx

[dyuei−1, j

dxuei−1, j

1

∑
ip=0

VU
i−1+ip, j

1

∑
jq=0

(τxx)(1−ip, jq)
(i−1+ip, j)

]

. (17.31)
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Similar manipulations apply for the strain terms, thus leading to

−
(

1
VU

i, j

)

12

∑
n=1

V(n)τxy(n)
∂eS(n)

∂(u(1))i, j

=

(

1
4 dhui, j (dxui, j)2

)

δy

[ dxuni, j−1

dyuni, j−1

1

∑
jq=0

VU
i, j−1+ jq

1

∑
ip=0

(τxy)(ip,1− jq)
(i, j−1+ jq)

]

. (17.32)

Bringing the two pieces together leads to the zonal friction acting at the velocity cell Ui, j

ρo F(x)
i, j =

(

1
4 dhui, j (dyui, j)2

)

δx

[dyuei−1, j

dxuei−1, j

1

∑
ip=0

VU
i−1+ip, j

1

∑
jq=0

(τxx)(1−ip, jq)
(i−1+ip, j)

]

+

(

1
4 dhui, j (dxui, j)2

)

δy

[ dxuni, j−1

dyuni, j−1

1

∑
jq=0

VU
i, j−1+ jq

1

∑
ip=0

(τxy)(ip,1− jq)
(i, j−1+ jq)

]

. (17.33)

By inspection, the meridional friction is given by

ρo F(y)
i, j =

(

1
4 dhui, j (dyui, j)2

)

δx

[dyuei−1, j

dxuei−1, j

1

∑
ip=0

VU
i−1+ip, j

1

∑
jq=0

(τxy)(1−ip, jq)
(i−1+ip, j)

]

−
(

1
4 dhui, j (dxui, j)2

)

δy

[ dxuni, j−1

dyuni, j−1

1

∑
jq=0

VU
i, j−1+ jq

1

∑
ip=0

(τxx)(ip,1− jq)
(i, j−1+ jq)

]

. (17.34)

Comparison with the continuum friction components given by equations (15.118) and (15.119)
indicates that the discretization is consistent; i.e., the discrete friction reduces to the contin-
uum friction as the grid size goes to zero.

17.3.8 Tension and strain in the quadrants

There are four tensions and strains corresponding to the four triads surrounding each ve-
locity point. Referring to Figure 17.2, assuming the central point is Ui, j, we discretize the
tensions and strains starting from the second form of the continuous tension and strain
(equations (17.15) and (17.16)) to find

(eT)i, j,(0,1) = δx ui−1, j − δy vi, j + (MT)i, j

(eT)i, j,(1,1) = δx ui, j − δy vi, j + (MT)i, j

(eT)i, j,(0,0) = δxui−1, j − δy vi, j−1 + (MT)i, j

(eT)i, j,(1,0) = δx ui, j − δy vi, j−1 + (MT)i, j

(eS)i, j,(0,1) = δy ui, j + δx vi−1, j + (MS)i, j

(eS)i, j,(1,1) = δy ui, j + δx vi, j + (MS)i, j

(eS)i, j,(0,0) = δy ui, j−1 + δx vi−1, j + (MS)i, j

(eS)i, j,(1,0) = δy ui, j−1 + δx vi, j + (MS)i, j

(17.35)

In general, the four tensions can be written

(eT)i, j,(ip, jq) = δx ui+ip−1, j − δy vi, j+ jq−1 + (MT)i, j (17.36)

and the four strains can be written

(eS)i, j,(ip, jq) = δy ui, j+ jq−1 + δx vi+ip−1, j + (MS)i, j (17.37)
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where ip = 0, 1 and jq = 0, 1. Notably, the metric terms

(MT)i, j = −ui, j (∂x ln dy)i, j + vi, j (∂y ln dx)i, j (17.38)

(MS)i, j = −ui, j (∂y ln dx)i, j − vi, j (∂x ln dy)i, j (17.39)

are common to the four triads, and so only need be computed once per velocity point.
Generally, the four tensions and strains are computed in the model and are then used to
compute the friction operator. When the Smagorinsky viscosity scheme (Sections 16.2 and
17.3.10) is enabled, they are used to compute the Smagorinsky viscosity as well.

17.3.9 Comments

This section contains some specific comments.

• The tension and strain for ocean points next to land contain a contribution from a
zero velocity living at the land-sea interface. In order to provide a full accounting
of the generally strong shears next to no-slip walls, it is important to include such
contributions rather than masking them out.

• In the special case of a uniform Cartesian grid, a constant isotropic viscosity, and a
zero anisotropic viscosity, the functionally derived discrete friction operator reduces
to the familiar 5-point discrete Laplacian. This operator has familiar dissipative com-
putational properties.

• Practical experience has revealed problems with the discretization for bottom-most
grid cells when these cells are thin partial cells that are surrounded by thicker partial
cells. The problem is that contributions from surrounding thick cells are then normal-
ized by the thin dhu of the central cell. To alleviate this problem, it is effective to use
the traditional 5-point Laplacian operator for computing friction in the bottom-most
grid cells.

17.3.10 Discretized Smagorinsky viscosity

The nonlinear viscosity coefficient is determined in terms of the deformation rate and grid
spacing. Since eT and eS involve terms with derivatives in both horizontal directions, there
needs to be an averaging performed to place them at a common grid position.

Pacanowski et al. (1991) (MOM1) defined both deformation rates at the north face of
the U-cell. This is the natural position for the meridional derivative terms. To get the
zonal derivative terms defined at the north face, it was necessary to average over the four
zonal derivatives surrounding the north face. The problem with such “four point” aver-
ages on the B-grid is that they can introduce computational modes. Computational modes
are not always problematical if there are other processes that can suppress the growth of
the modes. The problem with the computational modes in the Smagorinsky scheme is that
they allow nontrivial field configurations yielding a zero deformation rate. Hence, they
produce a zero Smagorinsky viscosity and so are not dissipated. Furthermore, these modes
represent grid scale waves, which are the waves an ideal implementation of the Smagorin-
sky scheme should dissipate the most. Therefore, it is not acceptable to allow these modes
in the discretized Smagorinsky scheme. Another approach is necessary.

The functional discretization described in this chapter eliminates the computational
modes. For each velocity triad, there is a corresponding Smagorinsky viscosity. In particu-
lar, referring to the deformation rates defined in equation (17.35), we have the correspond-
ing Smagorinsky diffusivities

Ai, j,(ip, jq) = (Υ∆s/π)2|E|i, j,(ip, jq) (17.40)
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where ip = 0, 1, jq = 0, 1 are the triad labels, and

|E|i, j,(ip, jq) =
√

[(eT)i, j,(ip, jq)]2 + [(eS)i, j,(ip, jq)]2 (17.41)

is the discrete total deformation rate. As mentioned earlier, one advantage of the functional
approach over the “Laplacian plus metric” approach (see Section 17.4) is the exploitation
of the deformation rates for computing both the Smagorinsky viscosity and the friction
operator.

17.4 Laplacian plus metric form of isotropic friction

The purpose of this section is to illustrate the mathematical equivalence between the “Lapla-
cian plus metric” form of friction and the stress tensor approach. Recall that we commented
on the numerical disadvantages of the Laplacian plus metric approach in Section 17.2. We
focus here on isotropic friction using spherical coordinates.

17.4.1 Spherical form of second order friction

In spherical coordinates, the metric takes the form

gi j = diag (g11, g22, g33) = diag (R2 cos2φ, R2, 1) (17.42)

and horizontal increments are

(dx, dy, dz) = (R cosφ dλ, R dφ, dz). (17.43)

Consequently, it is only g11 that has nonzero spatial dependence. The friction then can be
written

Fx =
∂(A eT)

∂x
+

1
cos2φ

∂(A cos2φ eS)
∂y

+ (κ u,z),z (17.44)

Fy =
∂(A eS)

∂x
− 1

cos2φ

∂(A cos2φ eT)
∂y

+ (κ v,z),z (17.45)

where the deformation rates are

eT = u,x − v,y − (v/R) tanφ

= (R cosφ)−1 (u,λ − v,φ cosφ− v sinφ)
eS = v,x + cosφ (u/ cosφ),y

= (R cosφ)−1 (v,λ + u,φ cosφ+ u sinφ). (17.46)

The terms associated with horizontal deformations

Fu =
1

R cosφ
∂(A eT)

∂λ
+

1
R cos2φ

∂(A cos2φ eS)
∂φ

(17.47)

Fv =
1

R cosφ
∂(A eS)

∂λ
− 1

R cos2φ

∂(A cos2φ eT)
∂φ

(17.48)

can be massaged into the form presented by Bryan (1969) and Wajsowicz (1993). That is the
purpose of the remainder of this section.
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17.4.2 Zonal friction

The lateral friction acting on the zonal velocity takes the expanded form

R Fu =
1

cosφ
(eT A,λ + A ∂λ eT)

+
1

cos2φ
(eS A,φ cos2φ+ A ∂φeS cos2φ− 2 A eS cosφ sinφ)

=
1

cosφ
(eT A,λ + eS A,φ cosφ)

− 2A
R cosφ

(v,λ tanφ+ u,φ sinφ+ u sinφ tanφ)

+
A

R cosφ
(u,λλ secφ+ u,φφ cosφ+ u,φ sinφ+ u secφ)

=
1

cosφ
(eT A,λ + eS A,φ cosφ)

+
A
R

(

u,λλ sec2φ+ u,φφ − u,φ tanφ+ u (sec2φ− 2 tan2φ)− 2v,λ sec2φ sinφ
)

=
1

cosφ
(eT A,λ + eS A,φ cosφ)

+
A
R

(

u,λλ sec2φ+ secφ (u,φ cosφ),φ + u(1− tan2φ)− 2v,λ sec2φ sinφ
)

, (17.49)

which renders

Fu = A
(

∇2
z u +

u(1− tan2φ)
R2 − 2v,λ sinφ

R2 cos2φ

)

+
1

R cosφ
(eT A,λ + eS A,φ cosφ). (17.50)

The second bracketed term in this expression arises from the spatial dependence of the
viscosity coefficient, and should be present for any non-constant viscosity coefficient model.
These non-constant viscosity coefficient terms amount to those identified by Wajsowicz
(1993).

It is useful to perform one final step in the formulation in order to bring the non-
constant viscosity coefficient inside the Laplacian. For this purpose, the Laplacian and
non-constant viscosity coefficient terms are expanded to yield

Fu =
A

R2 cos2φ
u,λλ +

A
R2 cosφ

(u,φ cosφ),φ +
A u (1− tan2φ)

R2 − 2 A v,λ sinφ
R2 cos2φ

+
Aλ

R2 cos2φ
(u,λ − v,φ cosφ− v sinφ) +

A,φ

R2 cosφ
(v,λ + u,φ cosφ+ u sinφ)

=
1

R2 cos2φ
(A u,λλ + A,λ u,λ) +

(

1
R2 cosφ

(A u,φ cosφ),φ − A,φ u,φR−2
)

+
A u (1− tan2φ)

R2 − 2 A v,λ sinφ
R2 cos2φ

− A,λ

R2 cos2φ
(v,φ cosφ+ v sinφ) + R−2 Aφ(v,λ secφ+ u,φ + u tanφ)

= ∇z · (A∇zu) +
A u (1− tan2φ)

R2 − 2 A v,λ sinφ
R2 cos2φ

− A,λ

R2 cosφ
(v,φ + v tanφ) +

A,φ

R2 cosφ
(v,λ + u sinφ). (17.51)
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This expression can be written as

∇z · (A∇zu) + old metricu + new metricu, (17.52)

where
∇z · (A∇zu) =

1
R2 cos2φ

(Au,λ),λ +
1

R2 cosφ
(A u,φ cosφ),φ (17.53)

is the horizontal Laplacian with the generally non-constant viscosity coefficient inserted.
Note that this Laplacian is acting on the zonal velocity as if it was a scalar field. The term

old metricu =
A u (1− tan2φ)

R2 − 2 A v,λ sinφ
R2 cos2φ

(17.54)

is the metric term employed for constant horizontal viscosity coefficient (Bryan (1969)), and

new metricu = − A,λ

R2 cosφ
(v,φ + v tanφ) +

A,φ

R2 cosφ
(v,λ + u sinφ) (17.55)

is the metric term arising from spatial dependence in the viscosity coefficient (Wajsowicz
(1993)).

17.4.3 Meridional friction

Repeating the exercise just performed for the zonal friction yields the following lines of
algebra for the meridional friction

R Fv =
1

cosφ
(eS A,λ + A ∂λ eS)

− 1
cos2φ

(eT A,φ cos2φ+ A ∂φeT cos2φ− 2 A eT cosφ sinφ)

=
1

cosφ
(eS A,λ − eT A,φ cosφ)

+
2A

R cosφ
(u,λ tanφ− v,φ tanφ cosφ− v tanφ sinφ)

+
A

R cosφ
(v,λλ secφ+ v,φφ cosφ+ v,φ sinφ+ v secφ)

=
1

cosφ
(eS A,λ − eT A,φ cosφ)

+
A
R

(

v,λλ sec2φ+ v,φφ − v,φ tanφ+ v(sec2φ− 2 tan2φ) + 2u,λ sec2φ sinφ
)

=
1

cosφ
(eS A,λ − eT A,φ cosφ)

+
A
R

(

v,λλ sec2φ+ secφ (v,φ cosφ),φ + v(1− tan2φ) + 2u,λ sec2φ sinφ
)

, (17.56)

which renders

Fv = A
(

∇2
z v +

v(1− tan2φ)
R2 +

2u,λ sinφ
R2 cos2φ

)

+
1

R cosφ
(eS A,λ − eT A,φ cosφ). (17.57)

Again, it is useful to expand this friction one more step in order to bring the viscosity
coefficient inside the Laplacian. This manipulation yields

Fv = ∇z · (A∇zv) + old metricv + new metricv, (17.58)
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where

old metricv =
A v (1− tan2φ)

R2 +
2 A u,λ sinφ

R2 cos2φ
(17.59)

is the metric employed for constant horizontal viscosity coefficient, and

new metricv =
A,λ

R2 cosφ
(u,φ + u tanφ) +

A,φ

R2 cosφ
(−u,λ + v sinφ). (17.60)
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TENSOR ANALYSIS

The purpose of this part of the book is to familiarize the reader with the basic
tools of general tensor analysis. An understanding of tensor analysis is necessary to
formulate the equations of rotating fluid dynamics on a sphere. The presentation is
aimed at the reader who has a solid foundation in undergraduate vector calculus.
No exposure to Cartesian or general tensors is assumed.

The logical place for this material is at the start of this book. However, it is
placed at the end to allow the pedestrian reader ample opportunity to skip this
material. Indeed, most practioners of geophysical fluid dynamics have little use
for tensor analysis, other than to note the appropriate formulae in their favorite
text. Nonetheless, tensor analysis is important for those formulating and building
modern ocean climate models, and so its presence in this book is appropriate.
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18.1 Introduction

Physics is independent of coordinates. Such a coordinate independent framework
lies at the core of theoretical physics. However, the deduction of physical laws can
at times be initiated through working within the framework of a particular set of
coordinates. For example, it is often convenient to use Cartesian coordinates when
describing physics on a flat manifold. Additionally, the implementation of physical
laws for numerical computation requires a chosen set of coordinates. Hence, those
working in geophysical fluid dynamics (GFD), and in particular numerical GFD,
find it useful to be familiar with various sets of coordinates and the transformations
of physical laws from one set of coordinates to another.

Differential geometry is an area of mathematics that provides tools for use in
working with coordinates. Additionally, it helps to expose the underlying physical
essence of a mathematical statement, rather than being encumbered with coordi-
nate dependent details. Differential geometry is yet another name for calculus as
defined on arbitrary smooth manifolds. It has its roots in classical vector analy-
sis and calculus, and so many of its results are familiar to those having studied
elementary calculus. Over time, the language and notation of differential geome-
try has been refined to the point where tensor indices are nearly absent in modern
treatments. This index free approach is not taken here, since to do so would exclude
a large number of readers. Rather, the treatment here employs tensorial notation,
with a sprinkling of the modern language thrown in where clarity is manifest. The
topic of this chapter is therefore basic tensor analysis from the perspective of ele-
mentary differential geometry.

Consequently, the purpose of this and the next chapter is to expose the reader
to elements of calculus on manifolds, also known as tensor analysis, with particu-
lar attention placed on applications to geophysical fluid dynamics. In the process,
many formulae proving useful in this book are derived and listed here.

As with any mathematical subject, there is a fair amount of notation and con-
vention to absorb. Indeed, the rules and gymnastics involved can appear quite
tedious. However, the rules are systematic and have sound motivation. A goal of
this chapter and the next is to expose some of the reasoning leading to the formal-
ism, and so to reduce the tedium and intimidation typically associated with tensor
analysis.

Those readers interested in somewhat more complete treatments of differential
geometry, with physical applications in mind, are encouraged to read one or more
of the following books:

• Aris (1962): Vectors, Tensors and the Basic Equations of Fluid Mechanics.
This book presents the basic ideas of tensor analysis within the context of fluid
dynamics. The treatment is general and the notation is clean. Aris’s approach
is used throughout this book.

• Schutz (1980): Geometrical Methods of Mathematical Physics and Schutz
(1985): A First Course in General Relativity. The first book provides a dis-
cussion of rather deep mathematical ideas central to much of modern physics,
with some application to fluid mechanics. The second book is a very readable
presentation of introductory general relativity. Much of the approach taken
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in the relativity book is followed here, and it provides another of the cen-
tral references for this chapter. Additionally, note that nearly all introductory
general relativity books include a discussion of tensor analysis in a manner
consistent with that given here.

• Flanders (1989): Differential Forms with Applications to the Physical Sci-
ences. This book, first published in 1963, is an early work aiming towards
the use of index-free notation in physical theories. Flanders provides some
applications to fluid mechanics.

• Morse and Feshbach (1953): Methods of Theoretical Physics. This book,
which comes in two volumes, is a classic. It is listed here since it articulates
an older and more cumbersome formalism not employed in the present book.
Nevertheless, certain authors still employ Morse and Feshbach as their pri-
mary reference for tensor analysis. Hence, it might be useful for some to
become familiar with their notation.

18.2 Some practical motivation

It is useful to begin with some practical motivation for learning the methods of
tensor analysis for use in GFD.

18.2.1 Generalized horizontal coordinates

When studying geophysical fluids on a sphere, the horizontal coordinates have tra-
ditionally been the spherical latitude-longitude coordinates (λ,φ), with (dx, dy) =
R (cosφ dλ, dφ) being the infinitesimal distance along the two orthogonal coor-
dinate axes, with R the sphere’s radius. Specifically, the coordinate φ is latitude,
which increases northward and is zero at the equator. λ is longitude, which in-
creases eastward with zero defined at an arbitrary longitude (e.g., Greenwich, Eng-
land) (see Figure 18.1). Spherical coordinates are locally orthogonal, thus greatly
simplifying the representation of the governing equations of motion.

Generalizations of the spherical coordinates are possible, and are becoming
quite popular in global ocean modeling. The central reason is to avoid the spherical
coordinate singularity at the north pole. Generalized horizontal coordinates can be
designed, after a bit of mathematical analysis, so that the polar singularity is moved
over land instead of being in the ocean. As the Arctic circulation is quite important
for global climate simulations, it is necessary to avoid coordinate artifacts, such as
a polar singularity, in these models. Additionally, practical limitations of the time
step available when the meridions converge greatly hinder the utility of spherical
coordinates.

In the generalizations of spherical coordinates, ocean modelers have predomi-
nantly chosen not to sacrifice the simplifications inherent in orthogonal curvilinear
coordinates. Section 19.11 presents many of the mathematical formulae needed
to derive the fluid equations of motion with generalized orthogonal coordinates.
Once the fluid equations are written with the generalized metric factors, one of the
many sophisticated orthogonal coordinate choices (e.g., Murray (1996)) is available
to the modeler in order to remove the polar singularity from the ocean domain.
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The papers by Smith et al. (1995); Murray (1996); Madec and Imbard (1996) provide
discussions of ocean modeling in generalized horizontal coordinates.

18.2.2 Generalized vertical coordinates

GFD consists of the study of rotating and stratified fluids. To describe stratified
fluids, it is often useful to employ specialized vertical coordinates that are distinct
from the usual vertical distance from the bottom topography. The mathematical
issues of generalized vertical coordinates are discussed in Chapter 5. Many aspects
of tensor analysis described here prove to be of use.

18.3 Coordinates and vectors

A surface possessing certain smoothness properties affords the usual rules of cal-
culus, such as differentiation and integration; i.e., it is a differential manifold. Im-
portantly, these manifolds are locally Euclidean, which means that they possess
flat tangent planes. These are the sorts of surfaces of interest in this book. One
familiar two dimensional example is the surface of a sphere S2. Another is three-
dimensional Euclidean space R3. A third is a constant density surface, commonly
known as an isopycnal surface, in a stratified fluid. An isopycnal surface results
from taking a suitable space-time or ensemble average to smooth out microscale
fluctuations.

To specify the position of a point on the manifold, an observer living on the
manifold may decide to set up a grid in some systematic fashion using a set of co-
ordinates. Let the observer decide to call these coordinates ξa, where the raised
index a can take on integer values up to M, the dimension of the manifold.∗ For ex-
ample, a person living in R3 may decide to use Cartesian coordinates or spherical
coordinates, depending on the application. Figure 18.1 illustrates their relation. In
contrast, a person confined to live on the surface of a sphere most likely will decide
to use the spherical angles (λ,φ), thus setting up the familiar latitude and longi-
tude lines on S2. A person confined to live on a general undulating surface, such
as an isopycnal, may decide to use some general curvilinear coordinates. The ana-
lytical relation between these general coordinates and the more familiar Cartesian
coordinates might be quite complicated, assuming such a relation even exists.

At any point on a differential manifold, the directions in which the coordinates
increase define special directions. For an M-dimensional manifold, M directions
form a basis for representing all vectors originating from this point. An arbitrary
first order tensor can be written as the linear combination

ξ =
M

∑
a=1
ξa~ea ≡ ξa~ea, (18.1)

where ~ea are a set of M linearly independent vectors forming a basis for the man-
ifold. A first order tensor represented in terms of a basis of vectors, such as ξ , is
often called a vector for brevity. Note the use of an arrow to denote a basis vec-
tor and a boldface to denote a general tensor. The second expression in equation

∗This raised index should not be confused withξ raised to the a′th power. The distinction should
be clear from the context.
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Figure 18.1: The position vector for a point in 3D Euclidean space can be repre-
sented in terms of many sets of coordinates. The simplest is the Cartesian triad
(x1, x2, x3). Another is the spherical coordinate system (λ,φ, r). In a geophysical
context, the angular coordinate 0 ≤ λ ≤ 2π is the longitude, with positive val-
ues measured eastward from Greenwich, England. The angular coordinate φ is
the latitude, with values φ = 0 at the equator and φ = π/2(−π/2) at the north
(south) poles. The radial distance r is measured here with respect to the center
of the sphere. The coordinate transformation between Cartesian and spherical is
given by (x1, x2, x3) = (r cosφ cos λ, r cosφ sin λ, r sinφ).

(18.1) defines the Einstein summation convention, for which repeated indices are
summed when one index is raised and the other lowered. The choice to lower the
index on the basis vectors ~ea is motivated by this very useful convention, whose
power will become apparent in subsequent discussions. To summarize, it is said
that ξ is a first order tensor that has a representation given by the coordinates ξa in
terms of the basis vectors~ea.

Using the above notation, the components of a basis vector, as written in terms
of another basis, take the form

~ea = Λb
a~eb, (18.2)

whereΛb
a is a number representing the components of the basis vector~ea as written

in terms of another basis~eb. That is, Λb
a are the components to the transformation

matrix between the bases. We have more to say about transformations in Section
18.4 and the following.

When the bases are identical,~ea =~ea, the components of the transformation are
simply given by the Kronecker symbol Λb

a = δb
a, where

δb
a =

{

1, if a = b
0, if a 6= b.

(18.3)

The Kronecker symbol forms an invariant representation of the second order unit
tensor. It is invariant since it takes the same numerical values when written in any
coordinate basis. The issues of tensorial order are discussed later in this chapter.
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Some examples are useful. First, in the Euclidean space R3, the following set
of vectors, based on the spherical coordinates, are suitable as a basis for all points
except the poles

~e1 = r cosφ λ̂ (18.4)

~e2 = r φ̂ (18.5)
~e3 = r̂. (18.6)

The unit directions, denoted by hats, point in the longitudinal (eastward) direction
(λ̂ ), latitudinal (northward) direction (φ̂ ), and radial direction (r̂). At the poles,
φ = ±π/2, and so the spherical basis is singular. Another set of basis vectors is the
familiar Cartesian unit vectors

~e1 = x̂ (18.7)
~e2 = ŷ (18.8)
~e3 = ẑ. (18.9)

Both the spherical and Cartesian basis vectors form mutually orthogonal sets when
using the familiar Euclidean metric. Furthermore, the Cartesian set is normalized
under the Euclidean metric, so that

~ea ·~eb = δab, (18.10)

where δab is yet another representation of the unit tensor to be discussed in the next
section. The spherical basis is not normalized, however, and the motivation for not
normalizing this basis will become apparent later.

For describing a general surface, such as an isopycnal surface, one may use the
following orthonormal basis vectors

~e1 =
ŷ ∧∇ρ
|ŷ ∧∇ρ| (18.11)

~e2 =~e3 ∧~e1 (18.12)
~e3 = ρ̂, (18.13)

where the wedge symbol ∧ represents the usual Cartesian vector cross product.
The unit normal

ρ̂ =
∇ρ
|∇ρ| (18.14)

points outward to the surfaces of constant density ρ(x, y, z, t). The gradient has the
following representation in terms of the Cartesian basis vectors

∇ρ = x̂ρ,x + ŷρ,y + ẑρ,z, (18.15)

where
ρ,a = ∂a ρ (18.16)

is a useful notation further motivated in later discussions. Note that when the
isopycnal surface has an outward normal ρ̂ = ẑ, which is parallel to the vertical,
then the basis vectors reduce to~e1 → x̂,~e3 → ŷ,~e3 → ẑ. In other words, the surface
is locally flat, or in the horizontal plane. In the general case, each of the vectors
changes whenever the isopycnal surface evolves.
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18.4 The metric and coordinate transformations

Upon specifying the position of a point with respect to some origin, it is of inter-
est to determine how far this point is from some other point. Since the points are
assumed to live on a smooth manifold, it is sufficient to consider the distance be-
tween two infinitesimally close points, and then use integration to find the distance
between finitely displaced points. Let the coordinates for the two points be given
by ξa and ξa + dξa, and let dξ = dξa~ea be the infinitesimal vector pointing from
one point to the other, where ~ea are the basis vectors. If these points lived in the
flat EuclideanR3 space, and the coordinatesξa are the usual Cartesian coordinates,
then the squared distance between them is simply given by the familiar Euclidean
norm

ds2 = dξ · dξ
=~ea ·~eb dξa dξb

= δab dξa dξb. (18.17)

In this expression, (ds)2 ≡ ds2 is the conventional way to write the infinitesimal
squared length. The Kronecker symbol δab is symmetric δab = δba, vanishes when
a 6= b, and is unity when a = b. As defined by equation (18.17), δab forms the
Cartesian components to the metric tensor for Euclidean space. Note that the prop-
erties of δab are also shared by δa

b as defined by equation (18.3). These very simple
properties of the Kronecker symbol, or the unit tensor, make much of the formalism
of general tensor analysis in Euclidean space using Cartesian coordinates unneces-
sary. Yet when working on non-Euclidean spaces, such as spheres, or with general
curvilinear coordinates, such as spherical coordinates, tensor analysis provides a
very transparent and elegant framework.

As seen by equation (18.17), the representation of the metric tensor for Euclidean
space using Cartesian coordiantes is δab. To determine the representation in another
set of coordinates, consider the transformation from Cartesian coordinates ξa to
arbitrary coordinates ξa. Use of the chain rule leads to the equivalent expression
for the squared infinitesimal length

ds2 = δab

(

∂ξa

∂ξa
∂ξb

∂ξb

)

dξa dξb

= δabΛ
a
a Λ

b
b dξa dξb

= gab dξa dξb, (18.18)

where
gab = δabΛ

a
a Λ

b
b (18.19)

define the components to the metric tensor as represented by the new set of coordi-
nates ξa. Also introduced in these expressions are the elements to the transforma-
tion matrix

Λa
a =

∂ξa

∂ξa . (18.20)

This matrix, whose rows are denoted by a and columns by a, is non-singular for
well-defined coordinate transformations. Its determinant, called the Jacobian of the
transformation, is therefore non-vanishing and single signed.
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Once the metric is determined, the distance along a curve between two finitely
separated points on the manifold is given by the integration

L =
∫ √

ds2

=
∫ ϕ2

ϕ1

∣

∣

∣

∣

gab
dξa

dϕ
dξb

dϕ

∣

∣

∣

∣

1/2

dϕ, (18.21)

where ϕ is a parameter specifying the curve, and ϕ1,2 are the curve’s endpoints.
For example, if the curve is a path on a space-time manifold traversed by a particle,
ϕ would be the time measured by a clock carried along by the particle (the proper
time).

Before proceeding with the general discussion, it is useful to establish some ex-
plicit results with the two most familiar sets of coordinates used in GFD: Cartesian
and spherical.

18.4.1 Transformation between Cartesian and spherical

Consider the transformation between Cartesian and spherical coordinates (see Fig-
ure 18.1)

(ξ1,ξ2,ξ3) = (x1, x2, x3) (18.22)

(ξ1,ξ2,ξ3) = (λ,φ, r). (18.23)

These coordinates are related by the expressions

x1 = r cosφ cos λ (18.24)

x2 = r cosφ sin λ (18.25)

x3 = r sinφ, (18.26)

the transformation matrix is given by

Λa
a =





−r cosφ sin λ −r sinφ cos λ cosφ cos λ
r cosφ cos λ −r sinφ sin λ cosφ sin λ

0 r cosφ sinφ



 , (18.27)

and the determinant of the transformation is

det(Λa
a) = r2 cosφ. (18.28)

This transformation matrix can be used, for example, to determine the transforma-
tion of the partial derivative operator

∂a = Λa
a ∂a. (18.29)

Organized as matrix-vector multiplication, this result takes the form

(∂λ , ∂φ, ∂r) = (∂1, ∂2, ∂3)





−r cosφ sin λ −r sinφ cos λ cosφ cos λ
r cosφ cos λ −r sinφ sin λ cosφ sin λ

0 r cosφ sinφ



 ,

(18.30)

where the partial derivatives do not act on the components of the transformation
matrix.
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18.4.2 Metric for S2

Consider the two-sphere S2 with radius R. Use the angles (ξ1,ξ2) = (λ,φ) as the
intrinsic coordinates, and the vectors~e1 = R cosφ λ̂ ,~e2 = R φ̂ as the correspond-
ing basis vectors. By embedding S2 in the Euclidean spaceR3, we recover the geo-
metric situation for classical GFD in which the sphere represents an idealization of
the Earth embedded in the 3D Euclidean space of Newtonian physics. Embeddings
of objects in more complicated space-times are studied in general relativity.

The metric for 3D Euclidean space is

gab = δab =





1 0 0
0 1 0
0 0 1



 , (18.31)

where the labels a, b run from 1, 2, 3. We will also find use to introduce labels α,β
which run from 1, 2. These Greek labels are used for coordinates (ξ1,ξ2) = (λ,φ)
that intrinsic to the sphere.

Consider two very close points living on S2, and let the Cartesian coordinates
for these points differ by dxa. Since the sphere is assumed to be embedded in R3,
the squared distance between the two points is determined through the Euclidean
norm

ds2 = δab dxa dxb. (18.32)

Now use the fact that the coordinates xa for points on the sphere are functions of the
sphere’s intrinsic coordinates ξα. The chain rule then brings the squared distance
to the form

ds2 = δab

(

∂xa

∂ξα
∂xb

∂ξβ

)

dξα dξβ. (18.33)

As such, we identify the metric for a sphere S2 embedded inR3

gαβ = δab

(

∂xa

∂ξα
∂xb

∂ξβ

)

= diag(R2 cos2φ, R2)
=~eα ·~eβ. (18.34)

The first and second columns of the transformation matrix (18.27) were used to
deduce this result. The last expression is an elegant means to derive the metric for
a surface embedded in Euclidean space.

18.5 Transformations of a vector

In differential geometry, a fundamental question one asks about an object is how it
changes under coordinate transformations. The transformation properties provide
valuable mathematical and physical information about the object. It turns out that
many objects transform under ways familiar from elementary calculus, and they
have been assigned the name tensors. The transformation properties determine the
tensor’s order or rank.

The simplest tensor is a scalar. This is a rank zero tensor, or equivalently a tensor
of zeroth order. The defining property of a scalar is that it has the same coordinate
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representation in any set of coordinates. In other words, scalars remain unchanged
or invariant under coordinate transformations. Ocean tracers are examples of scalar
fields (Section 4.2.1).

As mentioned in Section 18.3, a first order tensor represented in terms of a basis
of vectors is often called a vector for brevity. Vectors are objects of physical interest
whose coordinate representations are affected by coordinate transformations. Here
we determine how a vector transforms under changes in coordinates, and hence
determine its tensorial attributes. First, consider the representation of an arbitrary
vector in terms of a particular set of basis vectors

F = Fa~ea. (18.35)

Now consider a representation of the same vector in terms of another set of basis
vectors

F = Fa~ea. (18.36)

Note that the tensor F did not change, only its coordinate representations Fa and Fa

changed. The tensor F is therefore abstracted from any particular coordinate repre-
sentation and so can be ascribed physical significance. Its representation, however,
depends on the arbitrary choice of coordinates which assign numerical values to its
components according to these coordinates.

In general, the two sets of basis vectors differ by a transformation, thus allowing
the second basis to be written in terms of the first through the relation

F = Fa Λa
a~ea, (18.37)

where Λa
a are components to the transformation matrix relating the two sets of

basis vectors. Equating the right hand sides of equations (18.35) and (18.37) implies
that the two coordinate representations of F are related by

Fa = Λa
a Fa. (18.38)

Similar arguments yield
Fa = Λa

a Fa, (18.39)

where Λa
a are components to the inverse transformation Λ−1. In the older tensor

analysis literature, these transformation rules are used to define a first order con-
travariant tensor. These ideas and manipulations form the core of practical tensor
analysis, and so will be used throughout the following.

18.6 One-forms

As discussed in Section 18.4, the metric tensor determines how to take the scalar
product between two vectors. The result is the squared distance between the two
vectors. More abstractly, the metric tensor takes two vectors as arguments, and
yields the scalar distance

g(~F, ~E) = [distance(~F, ~E)]2 (18.40)



18.6. ONE-FORMS 405

where we find it convenient in this section to use the arrow to denote a first order
tensor expressed in terms of its vector basis. When supplied with only one vector,
the metric produces an object known as a one-form

˜F ≡ g(~F, ), (18.41)

where the tilde label is used to distinguish a one-form from a vector. In turn, a
one-form takes a vector as argument and produces a scalar

˜F(~E) = g(~F, ~E). (18.42)

These definitions are symmetric, so that a vector acts on a one-form and also pro-
duces a scalar

~E(˜F) = g(~E,~F). (18.43)

Since the metric tensor is symmetric, the ordering of its vector arguments is irrel-
evant, and so the result of a one-form acting on a vector is the same as that vector
acting on the one-form

˜F(~E) = ~E(˜F). (18.44)

Just as for vectors, there are special one-forms defining a basis for all one-forms.
Hence, any one-form can be written as a linear sum of the basis one-forms. For any
basis of vectors, there is a corresponding basis of one-forms related through

~ea(ẽb) = δb
a. (18.45)

For example, with the basis of vectors for the surface of the sphere of radius R,

~e1 = R cosφ λ̂ (18.46)

~e2 = R φ̂ , (18.47)

the corresponding basis of one-forms is

ẽ1 = (R cosφ)−1 λ̂ (18.48)

ẽ2 = R−1 φ̂ . (18.49)

Using the basis of one-forms, an arbitrary one-form is written as the linear sum

˜F = Fa ẽa, (18.50)

where Fa is the coordinate representation of the one-form ˜F. Using the orthonor-
mality relation between the one-form and vector basis, it is possible to determine
the coordinate components to a one-form through letting the one-form “eat” one of
the basis vectors

˜F(~eb) = Fa ẽa(~eb)
= Fa δ

a
b

= Fb. (18.51)
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18.7 Metric as the map between vectors and one-forms

To each one-form, there is a corresponding vector related through the metric tensor.
This result is easy to see through examining again the expression for the one-form
components

Fa = ˜F(~ea)

= g(~F,~ea)

= g(Fb~eb,~ea)

= Fbg(~eb,~ea)

= Fbgba. (18.52)

The ability to take the component Fb outside the argument of the metric tensor
follows since Fb is simply a number. In short, the component of a one-form Fa is
related to the component of a vector Fb through the relation

Fa = gabFb. (18.53)

As a result, one finds that a one-form is a tensor of type (0
1). Additionally, we see

that the metric tensor maps one-forms to vectors. The previous arguments can be
used to show that the inverse metric provides for the relation

Fa = gabFb, (18.54)

where gab are components of the inverse metric g−1. It is in this manner that a
one-form and its corresponding vector are said to maintain a duality relationship,
which is a generalization of the duality maintained between row vectors and col-
umn vectors in linear algebra.

These results establish the general manner in which to transform the represen-
tation of a tensor. Namely, the metric and its inverse transform the type or rank of a
tensor through acting on the tensor’s labels. For example, the inner product of two
vectors can be written in either of the equivalent forms

g(~F, ~E) = ˜F(~E)
= Fa Ea

= gabFb Ea

= gabFa Eb. (18.55)

It is through this transformation that we can see why it is often irrelevant whether
a tensor is considered in its one-form or vector representation, since they are easily
mapped to one another via the metric tensor. The fundamental notion is the order
of the tensor, where both one-forms and vectors are first order tensors. Further
examples will be encountered in the following.

18.8 Transformation of a one-form

Positioning of the indices on the one-form components are dual to the indices on
the vector components. As such, one suspects that the transformation of a one-form



18.9. ARBITRARY TENSORS AND THEIR TRANSFORMATIONS 407

occurs through the components to the inverse transformation used for vectors. In-
deed, this result is easy to establish using the transformation properties of the met-
ric, the mapping property between vectors and one-forms, and the transformation
properties of a vector:

Fa = gab Fb

= gab Λ
b

bFb

= Λa
a Λ

c
b gac Λ

b
bFb

= Λa
a δ

c
b gacFb

= Λa
a Fa. (18.56)

To establish this result, we used the relation

Λc
b Λ

b
b = δc

b. (18.57)

which follows sinceΛb
b are components to the matrixΛ−1 andΛb

b
are components

to the matrix Λ.

18.9 Arbitrary tensors and their transformations

The previous formalism provides the framework for determining how any tensor
transforms under a coordinate change. For example, consider a second order tensor

T = Tab~ea~eb. (18.58)

The numbers Tab form the components to T as expanded in terms of the basis vec-
tors~ea. Considering T as an abstract object, we can also consider the representations

T = Ta
b~ea ẽb, (18.59)

or
T = Tab ẽa ẽb. (18.60)

In classical tensor analysis, Tab is termed the second order contravariant repre-
sentation of T; Ta

b is the first order contravariant and first order covariant repre-
sentation; and Tab is the second order covariant representation. An easy way to
remember the language is the mnemonic “co-lo”, which associates covariant with
lowered indices. Modern tensor analysis avoids the use of these terms in favor of
denoting the type of tensor as symbolized by (M

N). Tab is termed the (2
0) representa-

tion; Ta
b is the (1

1) representation; and Tab is the (0
2) representation. Both languages

are employed in the following, as it is useful to be familiar with these terms when
reading the literature.

The transformation properties of the different representations of T are straight-
forward to determine. First, consider the transformation to another basis set. Recall
that vectors and one-forms transform as

~ea = Λa
a ~ea (18.61)

ẽa = Λa
a ẽa. (18.62)
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Consequently,

T = Tab~ea~eb

= Tab Λa
a Λ

b
b~ea~eb

= Tab~ea~eb, (18.63)

where
Tab = Tab Λa

a Λ
b
b. (18.64)

Similarly,
Ta

b = Ta
b Λ

a
a Λ

b
b (18.65)

and
Tab = Tab Λ

a
a Λ

b
b. (18.66)

Recall that in Section 18.4, we determined that the metric transforms under a
change in coordinates as

gab = Λa
a Λ

b
b gab, (18.67)

where this relation was established in the special case of gab = δab. In general, it is
simple to show that any two representations of the metric are related by equation
(18.67). As such, the metric transforms as second a order tensor, hence justifying its
appellation as the metric tensor.

18.10 Tensorial properties of the gradient operator

The partial derivative operator

∂a =
∂

∂ξa (18.68)

naturally carries its index downstairs. As such, one might suspect that it forms the
first order covariant components to the gradient tensor∇. The chain rule

∂a =
∂

∂ξa

=
∂ξa

∂ξa
∂

∂ξa

= Λa
a ∂a (18.69)

establishes that indeed, the partial derivative operator transforms as a first order
covariant tensor, thus establishing that the gradient operator

∇ = ẽa ∂a (18.70)

is a first order tensor naturally represented as a one-form. Raising the label on the
derivative gives

∂a = gab ∂b, (18.71)

which form the components to the contravariant or vector representation of the
gradient operator

∇ =~ea ∂a. (18.72)
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18.11 The invariant volume element

The volume element for Euclidean space, as written with Cartesian coordinates,
takes the form

dV = dx1 dx2 dx3. (18.73)

Volume elements arise, for example, when integrating over a finite volume, or for
setting the volume of an infinitesimal fluid parcel. It is useful to generalize this
result to arbitrary coordinates on an arbitrary manifold.

18.11.1 Derivation of the invariant volume element

To derive an expression for the volume element relevant for any manifold using
any coordinates, begin with the familiar rules from elementary calculus relating
the differential elements dξ1 dξ2 dξ3 and dξ1 dξ2 dξ3 in two sets of coordinates

dξ1 dξ2 dξ3 =

(

∂(ξ1,ξ2,ξ3)
∂(ξ1,ξ2,ξ3)

)

dξ1 dξ2 dξ3

= det(Λa
a) dξ1 dξ2 dξ3 (18.74)

where det(Λa
a) is the Jacobian, or determinant of the transformation matrix. The

transformation is well-defined so long as the Jacobian does not vanish. Note that
the labels on the transformation matrix are maintained inside the determinant sym-
bol to indicate between which sets of coordinates this tranformation matrix is re-
ferred. As such, it is possible to explicitly note the matching of indices on both sides
if this equation. This notation is especially useful when more than one transforma-
tion is considered.

For certain cases, the Jacobian is tedious to compute. In these cases, the compu-
tation can be simplified by using the following relation between the Jacobian and
the determinant of the metric. For this purpose, recall that the transformation of
the metric (Section 18.9) is given by

gab = Λa
aΛ

b
b gab. (18.75)

Written as a matrix equation, this result takes the form

(g) = (ΛT) (g) (Λ) (18.76)

whereΛT is the matrix transposed. This equation is valid upon taking determinants
of both sides. Now recall two properties of the determinant:

1. det(A B) = det(A) det(B), for any two matrices A and B. This result is
proven in various linear algebra texts, such as page 203 of Noble and Daniel
(1977).

2. det(ΛT) = det(Λ). This result is trivial to prove.

Consequently, re-exposing the labels on Λ and the metric,

det(Λa
a) =

(

det(gab)
det(gab)

)1/2

, (18.77)
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where it has been assumed that the manifold has a positive definite metric, which
is true for surfaces, such as the sphere, considered in this book. The determininat
of the metric appears quite often in the following, and so it is useful to introduce
the notation

G = det(gab) (18.78)

G = det(gab). (18.79)

Note that most books use the symbol g rather than G, which for our purposes is not
useful since g is the acceleration of gravity at the earth’s surface. In summary, we
are left with the very simple relation

√
G dξ1 dξ2 dξ3 =

√

G dξ1 dξ2 dξ3. (18.80)

This expression leads us to conclude that the expression

dV ≡
√
G dξ1 dξ2 dξ3 (18.81)

is invariant under coordinate transformations; i.e., it is a scalar. Hence, it forms
the appropriate generalization to arbitrary coordinates of the differential volume
element.

18.11.2 Invariant volume element in different coordinates

It is useful to consider some examples of how the volume element appears when
writing it in various coordinates. First, as noted above, the volume element for
three-dimensional Euclidean space using Cartesian coordinates (ξ1,ξ2,ξ3) is dV =
dx1 dx2 dx3. Spherical coordinates, (ξ1,ξ2,ξ3) = (λ,φ, r) (Figure 18.1), with met-
ric gab = diag(r2 cos2φ, r2, 1), have a volume element

dV = G1/2 dr dλ dφ = r2 cosφ dr dλ dφ. (18.82)

The equality
dx1 dx2 dx3 = r2 cosφ dr dλ (18.83)

is familiar from elementary Calculus.
For an arbitrary nonsingular and orthogonal set of coordinates, defined such

that the line element takes the diagonal form

ds2 = (h1 dξ1)2 + (h2 dξ2)2 + (h3 dξ3)2, (18.84)

the invariant volume element takes the form

dV = G1/2 dξ1 dξ2 dξ3 = h1 h2 h3 dξ1 dξ2 dξ3. (18.85)

These coordinates are often called generalized orthogonal curvilinear coordinates. They
correspond to the orthogonal set of basis vectors

~ea = ha ê(a), (18.86)
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where no summation is implied and ê(a) are the dimensionless unit directions.∗

Hence, the functions ha, which generally depend on space-time, determine the local
“stretching” function in the three orthogonal unit directions ê(a) for use in measur-
ing distance. A common choice in ocean modeling is to set h3 = 1 and then choose
the horizontal stretching factors h1 and h2 so that the North Pole lives over land
rather than ocean (Murray (1996); Madec and Imbard (1996); Smith et al. (1995)).
In this way, the ocean domain does not contain the annoying coordinate singular-
ity possessed by spherical coordinates at the North Pole. Much more is said about
orthogonal coordinates in Section 19.11.

Finally, consider the case of isopycnal coordinates (x, y,ρ). In Section 5.5.2,
we derive the transformation matrix between Cartesian and isopycnal coordinates.
The Jacobian of that transformation is the specific thickness z,ρ, which gives the
expression for the volume element

dV = z,ρ dx1 dx2 dρ. (18.87)

This expression can also be found through the formula dV = G1/2 dx1 dx2 dρ,
where G is the determinant of the metric tensor for three dimensional Euclidean
space as written using isopycnal coordinates. Using the transformation matrix
Λa

a from Section 5.5.2, and the tensor transformation rules from Section 18.9, it is
straightforward to derive the expression for the metric (see Section 5.6)

gab = Λa
a Λ

b
bδab

=





1 + z2
,x z,x z,y z,x z,ρ

z,x z,y 1 + z2
,y z,y z,ρ

z,x z,ρ z,y z,ρ z2
,ρ



 , (18.88)

where δab is the metric for Euclidean space written in terms of Cartesian coordi-
nates. A simple calculation shows that indeed G1/2 = z,ρ.

18.12 Determinants and the Levi-Civita symbol

Consider a transformation matrix Λa
a between two sets of coordinates, and let the

manifold be two dimensional. As already mentioned, a well defined transforma-
tion has a non-zero determinant

det(Λa
a) = Λ1

1 Λ
2

2 −Λ
1

2 Λ
2

1. (18.89)

Determinants, especially those associated with transformations, are ubiquitous in
tensor analysis. It turns out that for many manipulations it is useful to introduce
the permutation or Levi-Civita symbol, which brings the determinant to the form

det(Λa
a) = εab Λ

a
1 Λ

b
2, (18.90)

where,

εab =







0, if any two labels are the same
1, if a, b is an even permutation of 1, 2
−1, if a, b is an odd permutation of 1, 2.

(18.91)

∗As explained in Section 19.11, the index on the unit directions is enclosed in parentheses to
advertise the fact that this label is not tensorial; i.e., the unit directions do not transform as tensors.
Rather, the functions ha carry the tensorial properties of the basis vectors~ea.
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This symbol is defined to have numerically the same values whether the labels
are raised or lowered: εab = εab. As seen, the Levi-Civita symbol is totally anti-
symmetric on its two labels. It has generalizations to any number of dimensions,
for which one more label is added to the symbol, and one more number added to
the permutation string. For example, in three dimensions,

εabc =







0, if any two labels are the same
1, if a, b, c is an even permutation of 1, 2, 3
−1, if a, b, c is an odd permutation of 1, 2, 3.

(18.92)

Through its connection to the determinant, the Levi-Civita symbol is also useful for
writing the curl of two vectors living inR3. For example, in Cartesian coordinates,

(∇∧ ~A)a = εabc Ac,b. (18.93)

Let us now see how the Levi-Civita symbol transforms. For this purpose, go
back to two dimensions where things are simple to explicity verify. The central
formula is

εab Λ
a

a Λ
b

b = εab det(Λa
a), (18.94)

which follows directly from the definition of the determinant. This expression is
valid so long as the transformed Levi-Civita symbol εab is numerically identical
to εab. Additionally, we see that the Levi-Civita symbol does not transform as the
components to a second order covariant tensor unless the determinant of the trans-
formation is unity, such as for a simple rotation. Rather, in general, the covariant
Levi-Civita symbol is said to transform as a second order tensor density of weight
−1, where the weight is determined by the power of the determinant. In order to
define a tensor of weight 0, consider the scaled Levi-Civita symbol

εab = G1/2εab. (18.95)

This scaling with the metric determinant is identical to that which was used to
produce a coordinate invariant volume element in Section 18.11. These factors are
indeed related, and in more complete discussions (e.g., Schutz (1980)), the connec-
tion is made explicit. For our purpuses, it is sufficient to note that εab transforms
as

Λa
a Λ

b
b εab = Λa

a Λ
b

b G
1/2εab

= G1/2εab det(Λa
a)

= G1/2
εab

= εab, (18.96)

where equations (18.94) and (18.77) were employed. Therefore, εab transforms as
the components to a regular second order covariant tensor, without the extra deter-
minant factors floating around. Likewise,

εab = G−1/2εab (18.97)

transforms as the components to a second order contravariant tensor. In subsequent
development, εab is referred to as the covariant Levi-Civita tensor.
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Each of these expressions derived in two-dimensions are valid in any number
of dimensions, as can be shown through induction. As hinted at above, one useful
application of the third order tensor εabc is in defining the covariant curl operation
(Section 19.8), which generalizes the usual curl from Cartesian vector analysis to
curved manifolds.

18.13 Surfaces embedded in Euclidean space

In Chapter 5, we discuss some of the basic properties of surfaces through study of
the metric for an isopycnal surface (see in particular Section 5.6). In this section, we
systematize and extend that discussion. Note that this section is a bit outside the
main line of development in this chapter and so can be easily skipped.

18.13.1 Induced metric tensor for a surface

Consider the line element in three-dimensional Euclidean space

ds2 = gab dξa dξb. (18.98)

The components of the metric tensor gab are those for Euclidean space as written in
terms of an arbitrary coordinate system ξa = (ξ1,ξ2,ξ3). If the line element lives
on the surface of interest, then the chain rules renders

dξa =
(

∂ξa

∂wα

)

dwα , (18.99)

where wα = (w1, w2) are coordinates intrinsic to the two-dimensional surface, and
ξa = ξa(wα) for points on the surface. In this section, Greek labels refer to coordi-
nates intrinsic to the surface, and Latin labels refer to the Euclidean space. Equation
(18.99) provides a transformation between infinitesimal displacements dwα on the
surface, and the corresponding displacements dξa in the space tangent to the sur-
face. The numbers

Λa
α =

(

∂ξa

∂wα

)

(18.100)

form components to the transformation matrix which transforms between the sur-
face and the embedding Euclidean space. It follows that the line element for points
on the surface takes the form

ds2 = gab Λ
a
α Λ

b
β dwα dwβ

≡ Gαβ dwα dwβ, (18.101)

where Gαβ are components to the metric tensor for the two-dimensional surface.
This metric is said to be induced by the embedding of the surface in the three-
dimensional Euclidean space. As an aside, we note that if the same surface is
embedded in some other space, such as a non-Euclidean space, then the induced
metric would generally differ. Equation (18.101) defining the metric is directly anal-
ogous to equation (18.67) expressing how components of the metric for Euclidean
space transform under a coordinate change.
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We use the above results implicitly when deriving the metric for an isopyc-
nal surface in Section 5.6.1 (see also Section 18.11.2). For that case, the intrinsic
coordinates are the usual (x, y) Cartesian coordinates of the point on the surface
ρ(x, y, z) = ρconst. The resulting surface metric Gαβ is given by the non-diagonal
2× 2 matrix in equation (5.55).

18.13.2 The invariant surface area element

The derivation of an invariant volume element given in Section 18.11 is general to
any space dimension. For a two dimensional space, such as a surface embedded in
Euclidean space, the invariant “volume” or area element takes the form

dA =
√

G dw1 dw2, (18.102)

where G = det(Gαβ) is the determinant of the surface metric tensor. This is the ap-
propriate form of the surface area element for use in forming surface integrals. For
example, if one wishes to integrate a field, such as temperature, over a particular
isopycnal surface ρ = ρ1 using the isopycnal coordinates (x, y,ρ), then the metric
given by equation (5.55) indicates that the surface integral should be of the form

∫

ρ=ρ1

T(x, y,ρ) dA =
∫

ρ=ρ1

T(x, y,ρ) (1 + S2
x + S2

y)1/2 dx dy. (18.103)

For many geophysically relevant situations, the isopycnal slopes are no larger than
1/100. In this case, the squared slope terms can be safely dropped. This “small
slope” approximation is fundamental to many numerical isopycnal ocean models.

18.13.3 Surface and space components of a tensor

Recall from Section 18.5 that a vector field ~F living in Euclidean space can be repre-
sented in terms of a basis of vectors that span Euclidean space

~F = Fa~ea. (18.104)

The components Fa are sometimes called the space components, as they are the com-
ponents of ~F relative to the Euclidean space basis ~ea. For points on some surface,
the chain-rule transformation (18.99) allows for ~F to also be written in the form

~F = Fa~ea

= Λa
α Fα~ea

≡ Fα~eα , (18.105)

where
Fα = Λαa Fa (18.106)

defines the surface components of ~F, and

~eα = Λa
α~ea (18.107)

defines the surface basis vectors. As seen in the next subsection, the surface com-
ponents Fα are the projection of the space components Fa onto the surface; i.e., they
are tangent to the surface.
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The covariant surface components Fα of the tensor are related to the contravari-
ant components through the surface metric tensor

Fα = Λa
α Fa

= Λa
α gab Fb

= Λa
α Λ

b
β gab Fβ

= Gαβ Fβ. (18.108)

Consequently, the surface metric Gαβ maps between surface vectors and surface
one-forms, just as the space metric gab maps between space vectors and space one-
forms.

18.13.4 Normals and tangents

Recall from Section 18.12 that the generalized form of a cross product between two
vectors is conveniently written as

Aa = εabc Bb Cc (18.109)

where εabc = G1/2εabc is the covariant form of the Levi-Civita symbol. Aa form
the covariant components to a one-form ˜A = Aa ẽa. It is easy to show that ˜A is
orthogonal to either of the vectors ~B = Bb~eb or ~C = Cc~ec. For example,

˜A(~B) = Aa Ba

= εabc Bb Cc Ba

= 0, (18.110)

which follows from the anti-symmetry of εabc.
If the two vectors ~B and ~C are not colinear, they define a two-dimensional sur-

face that is tangent to these two vectors at each point in space. In this case, we can
write the cross-product as

Aa = εabc Bb Cc

= εabc Λ
b
β Λ

c
γ Bβ Cγ . (18.111)

The factor εabc Λ
b
β Λ

c
γ is anti-symmetric under interchange of the surface tensor

labels; viz.,

εabc Λ
b
β Λ

c
γ = εacb Λ

c
β Λ

b
γ

= −εabc Λ
b
γ Λ

c
β. (18.112)

Hence, we can introduce the covariant tensor Na through

Na εβγ = εabc Λ
b
β Λ

c
γ , (18.113)

bringing the cross-product to the form

Aa = Na εβγ Bβ Cγ . (18.114)
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In this expression, εβγ =
√

Gεβγ is the covariant Levi-Civita tensor on the surface.
With εβγ εβγ = 2, it is possible to write

Na =
1
2
εabc ε

βγ Λb
β Λ

c
γ . (18.115)

By construction, the one-form ˜N = Na ẽa is orthogonal to all spatial vectors
tangent to the surface. To see this property, note that

˜N(~B) = Na Ba

= Na Λ
a
µ Bµ

=
1
2
εabc ε

βγ Λb
β Λ

c
γ Λ

a
µ Bµ

= 0, (18.116)

which follows because µ must equal either β or γ. Therefore, the surface compo-
nents of an arbitrary one-form Fα = Λa

α Fa can be thought of as the projection of the
space components Fa onto the surface. For, if we write Fa = Fa + c Na, then

Fα = Λa
α (Fa + c Na) = Λa

α Fa, (18.117)

which shows that the component normal to the surface has been destroyed. In this
way, Fα = Λa

α Fa represents the components of the one-form ˜F which are tangent
to the surface. With c = Nb Fb, the projection of an arbitrary covariant space tensor
onto the surface is given by

Fa = Fa − (Nb Fb) Na. (18.118)

In addition to describing a surface in terms of two non-colinear vectors, one
often describes a surface in terms of the envelope of constant values of a scalar
function of space. For example, the algebraic equation

ρ(ξa) = ρconst (18.119)

defines isopycnal surfaces. Following the ideas from Section 18.3, which are based
on traditional vector analysis,

Na =
ρ,a

|ρ,b ρ
,b|1/2

=
ρ,a

|gbc ρ,b ρ,c|1/2
(18.120)

provides the components to a outward normal one-form for the surface. In this
expression, gbc are components to the inverse metric for the embedding space. The
previous formalism follows with this definition of the normal one-form. In partic-
ular, the projection of an arbitrary one-form onto the surface is given by

Fa = Fa −
Fb ρ,b ρ,a

gbc ρ,bρ,c
. (18.121)

These are the components of ˜F which are tangent to the surface.
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The purpose of this chapter is to derive many of the formulas of vector calculus,
yet allowing the underlying manifold to be curved. These formulae have applica-
tion to deriving the equations for fluid dynamics on a sphere.

19.1 Fundamental character of tensor equations

Differential physical laws are most useful when written so that they remain form
invariant under arbitrary coordinate transformations. In this way, the essence of
the laws can be revealed, rather than being confused with potentially coordinate
dependent artifacts. As such, the laws realize the postulate that physics does not
care about coordinates. This fundamental postulate, which often goes by the name
covariance, is at the root of modern physics.

Although physics does not care about coordinates, for many practical situations
it is often convenient, if not necessary, to work in a specific coordinate system that
is suited to the geometry. For example, when working in Euclidean space it is
simplest for many purposes to use the familiar Cartesian coordinate system. And
for numerical modeling, it is necessary to choose a particular set of coordinates in
which to discretize the continuous equations.

After deriving a physical law in one set of coordinates, it is of interest to es-
tablish the form of the law in another set of coordinates. How does the differen-
tial equation transform? Does one have to re-derive the law from first principles
working with the new set of coordinates? Fortunately, so long as the equations are
written in a proper tensorial form, in which they exemplify covariance, then the
equations are form invariant and so the derivation need not be repeated in each
set of coordinates. In practice, an equation exemplifies covariance if all the ten-
sor indices are properly matched on both sides of the equation and each derivative
is covariant. The elegance allowed by this property is the key reason that tensor
analysis is a ubiquitous tool in theoretical physics.

To motivate these ideas, note that the partial derivative of a field appears in most
differential physical laws. For example, the divergence of velocity appears in the
equation for mass conservation in a fluid. In Cartesian coordinates, this divergence
takes the form

∇ · (va~ea) = ẽa
(m) ∂a (~e(m)

b vb)

= va
,a. (19.1)

The intermediate expression is a rather cumbersome way of writing what is more
often seen in the more concise final form. Yet the final form only arises since the ba-
sis vectors~ea are each constants in space-time. In more general coordinates, such as
spherical coordinates, the basis vectors are not constants, and so the partial deriva-
tive operator picks up terms proportional to the derivative of the basis vectors. The
result is a more complicated divergence. Additionally, it possesses clumsy terms
depending on the nature of the chosen coordinates. Hence, the divergence as de-
fined using partial derivatives does not remain form invariant under coordinate
transformations. The notion of a covariant divergence described in Section 19.2
accounts for these extra terms so that the equations remain form invariant.
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We now summarize some of the properties characterizing covariance (taken af-
ter page 153 of Schutz (1985)):

1. Certain manipulations of tensor components are called permissible tensor op-
erations because they produce components of new tensors. The following are
permissible operations:

(a) Multiplication of a tensor by a scalar field produces a new tensor of the
same type.

(b) Addition of components of two tensors of the same type gives compo-
nents of a new tensor of the same type. In particular, only tensors of the
same type can be equal.

(c) Multiplication of components of two tensors of arbitrary type gives com-
ponents of a new tensor whose type is given by the sum of the types for
the individual tensors. This operation is called the outer product.

(d) Covariant differentiation (discussed in Section 19.2) of the components
of a tensor of type (M

N) gives the components to a tensor of type ( M
N+1).

(e) Contraction on a pair of indices of the components of a tensor of type (M
N)

gives the components of a tensor of type (M−1
N−1). For example, contraction

of the components Ta
b of the second order tensor T produces the scalar

V = Ta
a. Note that contraction is defined only between an upper and

lower index.

2. If two tensors of the same type have equal components in a given basis, then
they have equal components in all bases. Hence, they are identical. For exam-
ple, if the components of the third rank tensors A and B satisfy Aab

c = Bab
c in

one set of coordinates, for all possible combinations of the indices a, b, c, then
this equality holds in all sets of coordinates and so the tensors are identical.
In particular, if all components of a tensor vanish in one set of coordinates,
they vanish in all coordinates. This property is easy to prove through use of
the transformation properties of tensors established in Section 18.9.

3. It follows from the previous properties that if an equation consists of tensors
combined only by the permissible tensor operations, and if the equation is
true in one basis, then it is true in any basis. If the equations involve covari-
ant derivatives, then the equations remain form invariant under changes in
coordinates.

19.2 Covariant differentiation

Differentiation of tensors on curved manifolds is a logical extension of the usual
differentiation on flat manifolds. The name given to such operations is covariant
differentiation. As mentioned earlier, covariant differentiation of a tensor of type
(M

N) gives the components to a tensor of type ( M
N+1). This result is exemplified be-

low. In determining the form of the covariant derivatives of tensorial quantities,
it is necessary to be aware that the basis vectors, basis one-forms, and coordinate
representation of the tensor can each have nonzero partial derivatives.
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19.2.1 The gradient one-form

Recall that a scalar function V can be thought of as a tensor of type (0
0). As such, it

maintains the same numerical value in any coordinate representation since it needs
no basis vectors in order to represent it. When taking its partial derivative

∂aV = V,a (19.2)

the result is a type (0
1) tensor, as follows since

∂aV = Λa
aV,a (19.3)

which defines the transformation rule of a type (0
1) tensor. This result could be

anticipated from the results in Section 18.10 where the transformation rules of the
partial derivative were established. Written as a one-form, the partial derivatives
of a scalar are components to the gradient one-form

∇V ≡ (ẽa ∂a) V, (19.4)

where ẽa define a basis of one-forms.

19.2.2 Covariant derivative of a vector

Consider a vector field living on the manifold ~F(ξa). The partial derivative of this
vector is given by

∂b~F = ∂b(Fa~ea). (19.5)

To determine the coordinate components of the right hand side, account must be
taken of the generally nontrivial dependence of the basis vectors on the coordinates
ξa. As a result,

∂b~F = (∂b Fa) ~ea + Fa ∂b~ea

=
(

Fa
,b~ea + Fa Γ c

ba~ec
)

=
(

Fa
,b + Fc Γ a

bc
)

~ea (19.6)

where
∂b~ea = Γ c

ba~ec (19.7)

defines the Christoffel symbols Γ c
ba. The Christoffel symbols are the coordinate rep-

resentations of the partial derivatives of the basis vectors. If the manifold is the
flat Euclidean space, and the basis vectors are the Cartesian unit vectors, then all
of the Christoffel symbols vanish. However, for Euclidean space described by non-
Cartesian basis vectors, the Christoffel symbols do not vanish. This result indicates
that the Christoffel symbols are not components to a tensor, since a tensor vanish-
ing in one set of coordinates vanishes for all sets of coordinates (see Section 19.1).
Contracting with the basis one-form ẽb yields the (1

1) tensor

ẽb ∂b~F = ẽb (Fa
,b + Fc Γ a

bc
)

~ea. (19.8)
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It is clear that this is a (1
1) tensor because of the explicit presence of the basis one-

form and basis vector. This tensor is known as the covariant derivative of the vector
~F. It is typically written in one of the following manners

ẽb ∂b~F = (∇b~F)a~ea (19.9)

= Fa
;b ẽb~ea

= (Fa
,b + Γ a

bc Fc) ẽb~ea. (19.10)

The semi-colon notation is used in the following. It naturally generalizes the comma
notation used for the partial derivative. When all of the Christoffel symbols vanish,
the components of the covariant derivative reduce to those of the partial derivative.
Additionally, the results from Section 19.2.1 show that the covariant derivative of a
scalar is identical to the partial derivative of that scalar

V;a = V,a. (19.11)

This result is obvious, since the scalar field requires no basis vectors for its repre-
sentation, and so there are no resulting Christoffel symbols.

19.2.3 Covariant derivative of a one-form

The results for the covariant derivative of a scalar and vector provide tools sufficient
for determining the covariant derivatives of any arbitrary tensor. For example, the
covariant derivative of a one-form can be found by considering the result of taking
the covariant derivative on the inner product of the one-form and a vector

(Ea Fa);b = (Ea Fa),b (19.12)

where equation (19.11) was used since Ea Fa is a scalar. Expanding the partial
derivative yields

(Ea Fa);b = Fa ∂b Ea + Ea ∂b Fa

= Fa ∂b Ea + Ea(Fa
;b − Γ a

bcFc)

= Fa(∂b Ea − Γ c
baEc) + Ea Fa

;b

≡ Fa Ea;b + Ea Fa
;b, (19.13)

where

Ea;b = ∂b Ea − Γ c
baEc (19.14)

defines the components to the covariant derivative of the one form. Hence,

∂bẼ = Ea;b ẽa. (19.15)

These results establish that the covariant derivative of a one-form results in a tensor
of type (0

2).
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19.2.4 Covariant derivative of the metric

As discussed in Section 19.1, one of the central reasons for employing tensor analy-
sis in physics is that when the tensorial properties of an expression are established
in one coordinate system, the same expression is also valid in an arbitrary coordi-
nate system. Notably, when written in Cartesian coordinates, the covariant deriva-
tive of the metric for Euclidean space vanishes

gab;c = 0, (19.16)

simply because the metric is the unit tensor δab, and all the Christoffel symbols van-
ish. The previous results established the tensorial nature of the covariant derivative,
consequently gab;c = 0 is a valid result for all coordinates. This result is often called
the metricity condition. It represents a self-consistency condition required for the
manifolds considered in this book.

19.3 Covariant derivative of a second order tensor

We are concerned in this book with manifolds that have zero torsion. For our pur-
poses, a zero torsion manifold renders the Christoffel symbol symmetric on its
lower two labels.

Given this property, we now compute the covariant derivative of an arbitrary
tensor on torsionless manifolds. To illustrate the general ideas, consider the covari-
ant derivative of a second order tensor. To start, note that the covariant derivative
of the following scalar quantity is given by

(Tab Fa Fb);c = (Tab Fa Fb),c

= Tab,c Fa Fb + Tab (Fa Fb),c

= Tab,c Fa Fb + Tab (Fa
,c Fb + Fa Fb

,c)

= Tab,c Fa Fb + Tab [(Fa
;c − Γ a

cd Fd) Fb + Fa (Fb
;c − Γ b

cd Fd)]

= Fa Fb (Tab,c − Tdb Γ
d
ca − Tad Γ

d
cd) + Tab (Fa Fb);c

= Tab ;c (Fa Fb) + Tab (Fa Fb);c (19.17)

where
Tab ;c = Tab,c − Γ d

ca Tdb − Γ d
cb Tad (19.18)

defines the components to the covariant derivative of the second order tensor Tab.
To reach this result, we used the symmetry Γ a

bc = Γ a
cb. This covariant derivative

results in a tensor of type (0
3). Similar considerations yield the expressions

Tab
;c = Tab

,c + Γ a
cd Tdb + Γ b

cd Tad, (19.19)

which results in a tensor of type (2
1), as well as

Ta
b ;c = Ta

b ,c + Γ a
cd Td

b − Γ d
bc Ta

d (19.20)

which results in a tensor of type (1
2).
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19.4 Christoffel symbols in terms of the metric

The vanishing covariant derivative of the metric, equation (19.16), combined with
equation (19.18) leads to the identity

0 = gab;c = gab,c − Γ d
ca gdb − Γ d

cb gad, (19.21)

which can be solved for the Christoffel symbols

Γ c
ab =

1
2

gcd(gda,b + gdb,a − gab,d). (19.22)

We now see explicitly that the Christoffel symbols are symmetric on their lower two
indices

Γ c
ab = Γ c

ba. (19.23)

19.5 Covariant divergence of a vector

There are many places in fluid mechanics where one needs to compute the covari-
ant divergence of a vector. For example, the covariant divergence of the velocity
field is proportional to the time rate of change of the density following a fluid par-
cel. The covariant convergence of a tracer flux contributes to the time tendency of
the tracer. In general, the covariant divergence of the components to a vector results
in a scalar

Fa
;a = Fa

,a + Γ a
abFb. (19.24)

Expression (19.22) for the Christoffel symbols yields for the contraction

Γ a
ab =

1
2

gad(gda,b + gdb,a − gab,d)

=
1
2

gadgad,b (19.25)

where symmetry of the metric tensor and its inverse was used.
The above expression for the covariant divergence is general, but it can be ren-

dered in a more convenient form. For this purpose, employ the following relation,
which follows for any symmetric positive definite matrix such as the metric tensor

det(A) = eln det(A)

= eln(ΠiΛi)

= eΣi lnΛi

= eTr(ln A). (19.26)

The first equality is a simple identity. The second equality relates the determinant
of a matrix to the product of its eigenvalues. The third equality is a simple identity.
The fourth equality relates the sum of the eigenvalues of a matrix to the trace of
this matrix. Each of these identities are trivial to verify using a set of coordinates in
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which the matrix is diagonal. For any symmetric and positive definite matrix, such
a set of coordinates always exists. This result renders

∂c ln det(A) = ∂c[Tr(ln A)]
= Tr(∂c ln A)

= Tr(A−1∂c A). (19.27)

With A equal to the metric and G = det(gab), this result yields

∂c ln G = gab gab,c, (19.28)

which in turn renders for the contracted Christoffel symbol

Γ a
ac = ∂c ln

√
G . (19.29)

This result brings the covariant divergence of a vector to the form

Fa
;a = Fa

,a + Fa ∂a ln
√
G

=
1√
G

(√
G Fa

)

,a
. (19.30)

This is a very convenient result and will be seen again in various contexts.

19.6 Covariant divergence of a second order tensor

In many applications, it is necessary to compute the covariant divergence of the
components to a second order tensor Tab. An important example includes the co-
variant divergence of the symmetric stress tensor, which typically parameterizes
subgrid scale transfer of momentum (see Chapter 15). The results from Section 19.3
renders

Tab
;b = Tab

,b + Γ a
bd Tdb + Γ b

bd Tad, (19.31)

To simplify this expression, it is useful to split the tensor components Tab into their
symmetric and anti-symmetric parts

Sab = (Tab + Tba)/2 (19.32)

Aab = (Tab − Tba)/2. (19.33)

Using equation (19.29), we find the covariant divergence of the symmetric com-
ponents to the tensor is given by

Sab
;b =

1√
G

(√
G Sab

)

,b
+ Γ a

bd Sbd. (19.34)

The term Γ a
bd Sbd does not generally vanish since both Γ a

bd and Sbd are symmet-
ric under interchange of b, d. For the anti-symmetric components, however, the
analogous term does vanish, hence leading to the covariant divergence of an anti-
symmetric tensor

Aab
;b = Aab

,b + Γ b
bd Aad

= Aab
,b + (ln

√
G),b Aab

=
1√
G

(√
G Aab

)

,b
. (19.35)



19.7. COVARIANT LAPLACIAN OF A SCALAR 425

This relation is analogous to the covariant divergence of a vector given by equation
(19.30). Note that Fa ≡ Aab

;b form the components to a vector field which has zero
covariant divergence

Fa
;a = Aab

;b;a = 0. (19.36)

This result follows trivially from the anti-symmetry of the components Aab under
interchange of a, b and the symmetry of the double covariant derivative under the
same interchange. This result is the mathematical basis for the skew-flux descrip-
tion of tracer stirring (Section 7.2).

19.7 Covariant Laplacian of a scalar

Equation (19.11) showed that the covariant derivative of a scalar is the same as the
partial derivative V;a = V,a. Recall also that V,a form the components to the gradient
one-form dṼ ≡ V,a ẽa (equation (19.4)). Raising the index on these components
yields the components to a vector gab V,a. Taking the covariant divergence of these
components then yields a scalar field, which defines the covariant Laplacian of the
scalar function V

(gab V,a);b =
1√
G

(√
G gab V,a

)

,b
(19.37)

where the relation (19.30) for the covariant divergence of a vector was employed.

19.8 Covariant curl of a vector

As mentioned in Section 18.12, the scaled Levita-Civita symbol εab = G1/2εab is
useful for generalizing the curl operation from Cartesian coordinates in Euclidean
space to arbitrary coordinates on a curved manifold. As such, let

(curl~F) = εabc Fc;b~ea (19.38)

define the covariant curl vector. To simplify the curl, recall the expression (19.14)
for the covariant derivative Fc;b = Fc,b− Γ a

cb Fa. Conveniently, the contraction εabc Γ a
cb

vanishes identically since εabc = −εacb whereas Γ a
cb = Γ a

bc. Hence, we are left with
the general expression for the covariant curl which involves just partial derivatives

(curl~F) = εabc Fc,b~ea. (19.39)

19.9 Covariant Laplacian of a vector

Recall from Section 19.2.2 that the covariant derivative of a vector is given by

∂a~F = Fb
;a~eb, (19.40)
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where Fb
;a = Fb

,a + Γ b
ad Fd is the covariant derivative of the components to the vector.

The covariant Laplacian of a vector is given by

∂a ∂a~F = ∂a
(

Fb
;a~eb

)

= gac∂c

(

Fb
;a~eb

)

= gac
(

Fd
;a,c + Γ d

cb Fb
;a

)

~ed

= gacFd
;a;c~ed. (19.41)

In general, the components gac Fd
;a;c to the Laplacian are tedious to compute. Ap-

pendix 2 of Batchelor (1967) provides useful expressions for various orthogonal
coordinates.

19.10 Integral theorems

The integral theorems from Cartesian vector analysis transform in a straightfor-
ward manner to arbitrary coordinates in arbitrary smooth spaces. The easiest way
to prove the theorems in general is to invoke the ideas from Section 19.1 in which
the integral theorems are written in a tensorially correct manner and then partial
derivatives are changed to covariant derivatives. Gauss’s Law, or the Divergence
Theorem, provides a useful example of the approach. Namely, the volume integral
of the divergence of a vector is given by

∫

dV Fa
;a =

∫

d3ξ
√
G 1√
G

(√
G Fa

)

,a

=
∫

dA Fa Na (19.42)

where the results from Section 18.11 were used for the invariant volume element,
the covariant divergence was written as given in Section 19.5, Na are components
to the outward normal one-form for the boundary surface, dA = d2w

√
G repre-

sents the invariant surface area element using surface coordinates (w1, w2), and the
traditional form of Gauss’s Law has been invoked. Other integral theorems are
generalized in a similar manner.

19.11 Orthogonal curvilinear coordinates

The case of orthogonal curvilinear coordinates occurs frequently in applications.
Consequently, it is useful to specialize some of the previous discussions to this
case. Many of the following results can be found, amongst other places, at the
end of chapter 1 in Morse and Feshbach (1953), various sections in Aris (1962), and
Appendix 2 of Batchelor (1967).

Orthogonal coordinates are characterized by a diagonal metric tensor. Hence,
the most general form of the metric written in orthogonal coordinates takes the
form

gab = diag
(

(h1)2, (h2)2, (h3)2
)

. (19.43)
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This metric is associated with the infinitesimal line element

ds2 = gab dξa dξb

= (h1 dξ1)2 + (h2 dξ2)2 + (h3 dξ3)2 (19.44)

(recall Section 18.11). It follows that the components to the inverse metric are given
by

gab = diag
(

(h1)−2, (h2)−2, (h3)−2
)

. (19.45)

For some purposes, the single label on the ha can be thought of as a single covariant
label since the squares of the ha yield the components to the second order covariant
metric tensor. With the metric as such, the square root of its determinant is given
by

√
G = h1 h2 h3. (19.46)

Using orthogonal coordinates, the basis vectors take the form

~e1 = h1 ê(1) (19.47)

~e2 = h2 ê(2) (19.48)

~e3 = h3 ê(3), (19.49)

where ê(a) are dimensionless orthonormal unit directions. The index on the unit
directions is enclosed in parentheses to advertise the fact that this label is not ten-
sorial; i.e., the unit directions do not transform as tensors. Rather, the functions ha
carry the tensorial properties of the basis vectors~ea. Note that the basis vectors are
determined by writing the metric tensor in the form

gab =~ea ·~eb. (19.50)

The corresponding basis one-forms are

ẽ1 = (h1)−1 ê(1) (19.51)

ẽ2 = (h2)−1 ê(2) (19.52)

ẽ3 = (h3)−1 ê(3), (19.53)

where the unit directions are identical whether their indices are raised or lowered:
ê(a) = ê(a).

Spherical coordinates (λ,φ, r) on EuclideanR3 provides the canonical example
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of a nontrivial set of orthogonal curvilinear coordinates

h1 = r cosφ (19.54)
h2 = r (19.55)
h3 = 1 (19.56)
√
G = r2 cosφ (19.57)

~e1 = r cosφ λ̂ (19.58)

~e2 = r φ̂ (19.59)
~e3 = r̂ (19.60)

ẽ1 = (r cosφ)−1 λ̂ (19.61)

ẽ2 = r−1 φ̂ (19.62)

ẽ3 = r̂ (19.63)

where the unit directions point in the radial, eastward, and northward directions,
respectively (see Figure 18.1). In contrast, with Cartesian coordinates forR3, all the
ha are trivially set to unity.

19.11.1 Physical components of tensors

In terms of a locally orthogonal basis of unit directions, an arbitrary vector takes
the form

~F = Fa~ea

= (Fa ha) ê(a)

≡ F (a) ê(a). (19.64)

Note that there is no summation performed on the Fa ha product. Since the unit
directions ê(a) are dimensionless, the terms F (a) each have the same physical di-
mensions. Consequently, F (a) are termed the physical components to the vector ~F
(see, e.g., Section 7.41 of Aris (1962) or Section 4.8 of Weinberg (1972)). The physical
components, due to their dimensional consistency, are often the forms for which
tensorial quantities appear in physical theories. They are also the forms most likely
to appear in numerical models. As with the unit vectors, the index on the phys-
ical components is enclosed in parentheses since the physical components do not
transform as components of a tensor. Rather, they transform as

F (a) = Fa ha

= Λa
a Fa ha

=
ha

ha
Λa

a F (a). (19.65)

The presence of the ha/ha factor precludes the physical components from trans-
forming as a tensor. Another useful notation is to use the Cartesian symbols x and
y to denote physical components, instead of the parentheses. For example,

F (a) = (F x,F y). (19.66)
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This notation will be used when the context is clear.
Expressed in terms of the orthogonal coordinates, an arbitrary one-form is writ-

ten

F̃ = Fa ẽa

= (Fa/ha) ê(a)

= F(a) ê(a). (19.67)

An important one-form operator is the gradient operator, to be considered in Sec-
tion 19.11.3. We will find it useful to introduce the physical components to this
operator via the use of physical components to the partial derivative operator

(∂x, ∂y, ∂z) = (∂(1), ∂(2), ∂(3)) = ((h1)−1 ∂1, (h2)−1 ∂2, ∂z). (19.68)

As for vectors, the fields F(a) each have the same physical dimensions, and they
are called the physical components to the one-form F̃. As with the physical compo-
nents to the vectors, the physical components to the one-forms do not transform as
tensors.

The above results for a vector and one-form generalize to an arbitrary tensor.
For example, if we express a second order tensor in terms of its contravariant com-
ponents, these components take the following form when using orthogonal coordi-
nates.

T = Tab~ea~eb

= (ha Tab hb) ê(a) ê(b)

= T (ab) ê(a) ê(b). (19.69)

The components

T (ab) = ha Tab hb, (19.70)

where there is no implied sum, are identified as the physical components of the
contravariant tensor Tab. Each of the physical components T (ab) has the same di-
mensions. Likewise, the same second order tensor written in terms of its mixed
second order components can be expressed in terms of the orthogonal coordinates
as

T = Ta
b ~ea ẽb

= (ha/hb) Ta
b ê(a) ê(b)

= T (a)
(b) ê(a) ê(b), (19.71)

where
T (a)

(b) = (ha/hb) Ta
b (19.72)

are the physical components, each of which have the same dimensions, and again
where there is no implied sum.
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19.11.2 Eliminating the stretching functions

Orthogonal coordinates afford an added feature that is quite useful to exploit when
discretizing the equations for an ocean model. Since the generalized coordinates
are orthogonal, a coordinate increment in one direction is independent of the other
direction:

∂1 (dξ2) = ∂2 (dξ1) = 0. (19.73)

Hence, for example,

h2 (u/h2),x = h2 dξ2 (u/h2 dξ2),x = dy (u/dy),x. (19.74)

This property allows for all formulae to be written in terms of the physical displace-
ments dx and dy, and so to eliminate stretching functions h1 and h2. This property
is convenient since the physical displacements are ultimately what are relevant for
the ocean model.

19.11.3 Gradient one-form

In orthogonal coordinates, the gradient one-form acting on a scalar is given by

∇V = (ẽa ∂a) V = (ê(a) ∂(a)) V. (19.75)

The second equality introduced the physical components to the gradient one-form
operator

∇ = ê(a) ∂(a), (19.76)

with ê(a) unit-directions, and physical components to the partial derivatives are

∂(a) = (h(a))
−1 ∂a, (19.77)

with no implied sum on the right hand side. Often the physical components to
the partial derivative are written ∂(a) = (∂x, ∂y, ∂z), yet with no implication that
the space is flat. Indeed, the non-flat nature of the sphere manifests in the non-
vanishing commutator

[

∂x, ∂y
]

= ∂x ∂y − ∂y ∂x = (∂x ln dy) ∂y − (∂y ln dx) ∂x. (19.78)

It is useful to touch bases with spherical coordinates, where the gradient of a scalar
is

∇V = V,λ (R cosφ)−1 λ̂ + V,φ R−1 φ̂ + ẑ V,z = V,x λ̂ + V,y φ̂ + ẑ V,z (19.79)

and the gradient operator is

∇ = λ̂ (R cosφ)−1 ∂λ + φ̂ R−1 ∂φ + ẑ ∂z. (19.80)
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19.11.4 Covariant divergence of a vector

From Section 19.5, the expression for the covariant divergence of a vector

Fa
;a =

1√
G

(√
G Fa

)

,a
(19.81)

takes the form in orthogonal coordinates

Fa
;a =

1
h1 h2 h3

(h1 h2 h3 Fa),a

=
1

h1 h2 h3

{

(

h2 h3 (h1 F1)
)

,1
+
(

h1 h3 (h2 F2)
)

,2
+
(

h1 h2 (h3 F3)
)

,3

}

=
1

h1 h2 h3

{

(

h2 h3 F (1)
)

,1
+
(

h1 h3 F (2)
)

,2
+
(

h1 h2 F (3)
)

,3

}

. (19.82)

Eliminating the stretching functions in favor of the physical displacements, accord-
ing to the properties noted in Section 19.11.2, leads to

Fa
;a = ∇ · F (19.83)

= (dy dz)−1 (dy dzF (x)),x + (dx dz)−1 (dx dzF (y)),y + (dx dy)−1 (dx dyF (z)),z
(19.84)

where the first equality introduced the common notation used to represent the di-
vergence of a vector. For spherical coordinates (λ,φ, r), with (h1, h2, h3) = (r cosφ, r, 1),
the divergence becomes

∇ · F =
1

r2 cosφ

(

(r2 cosφ Fλ),λ + (r2 cosφ Fφ),φ + (r2 cosφ Fr),r

)

(19.85)

= (r cosφ)−1
(

(F λ),λ + (Fφ cosφ),φ

)

+ r−2 (r2 F r),r. (19.86)

Note that with general vertical coordinates (Chapter 5), or even with partial
cells (Adcroft et al. (1997) and Pacanowski and Gnanadesikan (1998)) used in many
z-coordinate ocean models (Section 5.2.1), the vertical distance dz is a function of
both the vertical and horizontal position. Hence, dz cannot be removed from the
horizontal partial derivative in equation (19.84). This point is brought out in Section
14.7 where we discuss the divergence of tracer fluxes.

19.11.5 Covariant divergence of an anti-symmetric tensor

Employing the general results from Section 19.6, we find that for orthogonal coor-
dinates, the covariant divergence of an anti-symmetric tensor is given by

Aab
;b =

1√
G

(√
G Aab

)

,b

=
1

h1 h2 h3

(

h1 h2 h3 Aab
)

,b
. (19.87)
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In particular,

F1 ≡ A1b
;b =

1
h1 h2 h3

[

(h1 h2 h3 A12),2 + (h1 h2 h3 A13),3

]

=
1

h1 h2 h3

[

(h3A(12)),2 + (h2A(13)),3

]

, (19.88)

and likewise

F2 ≡ A2b
;b =

1
h1 h2 h3

[

(h3A(21)),1 + (h1A(23)),3

]

(19.89)

F3 ≡ A3b
;b =

1
h1 h2 h3

[

(h2A(31)),1 + (h1A(32)),2

]

. (19.90)

The physical components of the vector field Fa are therefore given by

F (1) = h1 F1 =
1

h2 h3

[

(h3A(12)),2 + (h2A(13)),3

]

(19.91)

F (2) = h2 F2 =
1

h1 h3

[

(h3A(21)),1 + (h1A(23)),3

]

(19.92)

F (3) = h3 F3 =
1

h1 h2

[

(h2A(31)),1 + (h1A(32)),2

]

. (19.93)

Eliminating the stretching functions leads to

F (x) = (dz)−1 (dzA(12)),y + (dy)−1 (dyA(13)),z (19.94)

F (y) = (dz)−1 (dzA(21)),x + (dx)−1 (dxA(23)),z (19.95)

F (z) = (dy)−1 (dzA(31)),x + (dx)−1 (dxA(32)),y. (19.96)

In terms of spherical coordinates (λ,φ, r), the physical components take the form

F (λ) =
1
r

[

(rA(λr)),r + (A(λφ)),φ

]

(19.97)

F (φ) =
1

r cosφ

[

(r cosφA(φr)),r + (A(φλ)),φ

]

(19.98)

F (r) =
1

r2 cosφ

[

(rA(rλ)),λ + (r cosφA(rφ)),φ

]

(19.99)

19.11.6 Covariant Laplacian of a scalar

In orthogonal coordinates, the covariant Laplacian of a scalar, derived in Section
19.7, takes the form

1√
G

(√
G gab V,a

)

,b
=

1
h1 h2 h3

{

(

h2 h3

h1
V,1

)

,1
+
(

h1 h3

h2
V,2

)

,2
+
(

h1 h2

h3
V,3

)

,3

}

.

(19.100)
Eliminating the stretching functions leads to

∇2V = (dy dz)−1 (dy dz V,x),x + (dx dz)−1 (dx dz V,y),y + (dx dy)−1 (dx dy V,z),z
(19.101)

where we introduced the common notation ∇2V for the Laplacian of a scalar. In
spherical coordinates

∇2V =
1
r2 (r2 V,r),r +

1
r2 cos2φ

(V,λλ + (V,φ cosφ),φ) + V,zz. (19.102)
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19.11.7 Covariant curl of a vector

From Section 19.8, the covariant curl takes the form

∇∧ ~F = curl~F = εabc Fc,b~ea, (19.103)

where the first expression is that commonly used in vector analysis. With orthogo-
nal coordinates, the curl becomes

curl~F = G−1/2εabc Fc,b~ea

=
ha ê(a)

h1 h2 h3
εabc (hc F(c)),b

=
1

h1 h2 h3

∣

∣

∣

∣

∣

∣

ê(1) h1 ê(2) h2 ê(3) h3

∂1 ∂2 ∂3
h1 F(1) h2 F(2) h3 F(3)

∣

∣

∣

∣

∣

∣

, (19.104)

where the last expression is written in a determinantal form. Eliminating the stretch-
ing functions leads to

curl~F = ê(1)

[

(dz)−1 (dzF(3)),y − (dy)−1 (dyF(2)),z

]

+ ê(2)

[

(dx)−1 (dxF(1)),z − (dz)−1 (dzF(3)),x

]

+ ê(3)

[

(dy)−1 (dyF(2)),x − (dx)−1 (dxF(1)),y

]

. (19.105)

19.12 Summary of some salient results

Given the importance of the results of Chapters 18 and 19, and given the likelihood
that most readers will avoid reading these chapters, it has been found useful to
summarize here some of the main results to be used throughout this book.

19.12.1 Rules for tensor analysis on manifolds

The following rules and ideas are sufficient for applications in this book.

• Conservation of indices: Lower and upper tensor indices are balanced across
equal signs.

• Einstein summation convention: Repeated indices are summed, unless oth-
erwise noted.

• Metric tensor: The metric tensor provides a means to measure the distance
between two points on a manifold:

(ds)2 = gmn dξm dξn. (19.106)

In this expression, (ds)2, often written ds2, is the squared infinitesimal arc-
length between the points, ξm is a general coordinate for a point, and m =
1, 2, 3 labels the coordinate (m is not a power).
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The metric for spherical coordinates on a sphere is diagonal. With coordinates
(ξ1,ξ2,ξ3) = (λ,φ, r), where λ is longitude andφ latitude, the metric is

gmn = diag(g11, g22, g33) = diag((r cosφ)2, r2, 1). (19.107)

The inverse metric components gmn are also needed, and they are given by

gmn = diag((r cosφ)−2, r−2, 1). (19.108)

In Cartesian coordinates, the metric tensor is given by

gmn = δmn = δmn = δm
n , (19.109)

where δ is the unit or Kronecker delta tensor. There is no distinction between
raised and lowered indices in Cartesian coordinates, hence the ability to jet-
tison the conservation of indices rule when working with Cartesian tensors.
For curvilinear coordinates, however, conservation of indices is necessary.

• Covariant and contravariant: A lower label is often termed “covariant” and
an upper label “contravariant.” The mnemonic “co-low” assists in remember-
ing the terminology.

Covariant and contravariant tensors can be considered dual, where the trans-
formation is through the metric tensor. For example, the covariant compo-
nents to the velocity vector um are related to the contravariant components
through

um = gmnun. (19.110)

Some examples are useful. In Cartesian coordinates, the velocity vector takes
the familiar form

(u1, u2, u3) = (u1, u2, u3) =
(

Dx
Dt

,
Dy
Dt

,
Dz
Dt

)

, (19.111)

where again there is no distinction between covariant and contravariant for
Cartesian tensors. In spherical coordinates, however, the contravariant veloc-
ity components are

(u1, u2, u3) =
(

Dλ
Dt

,
Dφ
Dt

,
Dr
Dt

)

, (19.112)

whereas the covariant components um = gmn un are

(u1, u2, u3) =
(

(r cosφ)2 Dλ
Dt

, r2 Dφ
Dt

,
Dr
Dt

)

. (19.113)

• Notation: As the above indicates, for curvilinear tensor analysis the difference
between a raised and lowered label is important. Additionally, in order to
avoid confusion, partial derivatives are denoted with a comma:

um ,n =
∂um

∂ξn . (19.114)
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• Covariant derivative: In order to account for nonconstant basis vectors on a
curved manifold, it is necessary to generalize partial derivatives to so-called
covariant derivatives. In particular, the strain tensor (see Section 15.3.1) has
components

2 emn = um;n + un;m (19.115)

where the comma has been generalized to a semi-colon.

For a “torsionless” manifold, such as a sphere, each component of the metric
tensor has a vanishing covariant derivative

gmn;p = 0. (19.116)

This is a trivial property for Cartesian coordinates on a plane, in which case
the metric is the constant unit tensor and the covariant derivative a partial
derivative

δmn;p = δmn,p = 0. (19.117)

However, for curvilinear coordinates gmn;p = 0 is quite useful. For example,
it provides for the convenient relation

um;n = (gmp up) ;n

= gmp up
;n. (19.118)

This result brings the strain tensor components to the form

2 emn = gmp up
;n + gnp up

;m. (19.119)

In general, the covariant derivative of a vector on a torsionless manifold is
given by

up
;n = up

, n + Γ
p
mn un, (19.120)

where Γ p
mn are components to the Christoffel symbol

Γ
p
mn =

1
2

gpq (gqm,n + gqn,m − gmn,q). (19.121)

A more geometric means of understanding the Christoffel symbol is to note
its components form the expansion coefficients of the partial derivative of the
basis vectors for a manifold

~ea,b = Γm
ab~em. (19.122)

That is, the Christoffel symbol accounts for the nonzero changes in the basis
vectors on a curved manifold. Note that it is symmetric on the lower two
labels:

Γ
p
mn = Γ

p
nm (19.123)

which is the defining property of torsionless manifolds.
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• Transformation rules: Under a coordinate transformation

ξm = ξm(ξm), (19.124)

tensors transform as, for example,

emn = Λm
m Λ

n
n emn, (19.125)

where the transformation matrix is given by the partial derivatives

Λm
m =

∂ξm

∂ξm . (19.126)

Sometimes it is useful to write the transformation matrix in traditional matrix
form. The convention is that the index which is placed a bit closer to the Λ
denotes the row (m in Λm

m), and the one pushed away a bit is the column (m
in Λm

m). The inverse transformation of a tensor takes the form

emn = Λm
m Λ

n
n emn, (19.127)

where the inverse transformation matrix has components given by

Λm
m =

∂ξm

∂ξm . (19.128)

Transformations of tensors with arbitrary rank generalize with an extra factor
of the transformation matrix corresponding to each tensor label. An example
of how the fourth order viscosity tensor transforms is given in Section 15.5.1.

19.12.2 Orthogonal coordinates

The metric tensor for orthogonal coordinates is diagonal

gmn = diag(g11, g22, g33), (19.129)

where the components gmn = gmn(t,ξ1,ξ2,ξ3) are generally functions of space-
time. The infinitesimal arc-length measuring the distance between any two closely
spaced points is therefore given by the diagonal quadratic-form

(ds)2 = g11(dξ1)2 + g22(dξ2)2 + g33(dξ3)2

= (h1 dξ1)2 + (h2 dξ2)2 + (h3 dξ3)2, (19.130)

where the positive metric or stretching functions hm = √gmm, with no implied sum,
are often useful to introduce. Additionally, the relation between covariant and con-
travariant components of a tensor is given through a single multiplication. For
example,

um = gmn un

= gmm um, (19.131)

relates the covariant velocity components um to the contravariant components um.
Importantly, there is no sum on the m label in the last expression.
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For the purposes of large-scale ocean modeling, it is usually sufficient to assume
the simpler diagonal form of the metric

gmn = diag(g11, g22, 1), (19.132)

where the nontrivial metric components are functions only of the horizontal posi-
tion. This result follows from the Traditional Approximation (Section 3.1) and is
made in this book. Another useful notation is to introduce the determinant of the
metric tensor

G = g11 g22 g33 (19.133)

since it appears frequently. With the Traditional Approximation for which g33 = 1,
the determinant is given by

G = g11 g22 = (h1 h2)2. (19.134)

19.12.3 Physical tensor components with orthogonal coordinates

In many applications, it is useful to introduce the physical components of a tensor
(see Section 7.4 of Aris (1962) or 4.8 of Weinberg (1972) or Section 19.11.1 of this
book). For example, the velocity field using spherical coordinates is often written

(u, v, w) =
(√

gλλ uλ ,
√

gφφ uφ,
√

grr ur
)

=
(

r cosφ
Dλ
Dt

, r
Dφ
Dt

,
Dr
Dt

)

. (19.135)

Additionally, the infinitesimal displacements along the coordinate directions on the
sphere are given by

(dx, dy, dz) = ((r cosφ) dλ, r dφ, dr) . (19.136)

More generally, for any orthogonal coordinate system, the physical components of
the displacement are written

(dx, dy, dz) = (h1 dξ1, h2 dξ2, h3 dξ3). (19.137)

Likewise, the physical components of the velocity are

(u, v, w) = (h1 u1, h2 u2, h3 u3). (19.138)

Consequently, for example,

u1
,1 =
√

g11 (u/
√

g11),x = h1 (u/h1),x (19.139)

Note that although the Cartesian notation x, y, z is used for convenience, the coor-
dinates are generally curvilinear.

The key property of the physical components of a tensor is that each has the
same dimensions; e.g., length for the physical displacement components, length/time
for the physical velocity components, etc. Importantly, the physical components
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are not components to a true tensor since the tensorial transformation rules are cor-
rupted by the square root of the metric. Correspondingly, the physical components
of the partial derivative operator do not generally commute

[

∂x, ∂y
]

= ∂x ∂y − ∂y ∂x = (∂x ln dy) ∂y − (∂y ln dx) ∂x, (19.140)

which vanishes only when the horizontal geometry is flat instead of curved. Hence,
as a rule of thumb it is best to perform mathematical manipulations with the ten-
sorial components, and only after establishing the final result should the physical
components be introduced.

19.12.4 Eliminating the stretching functions

Orthogonal coordinates afford an added feature that is quite useful to exploit when
discretizing the equations. Since the generalized coordinates are orthogonal, a co-
ordinate increment in one direction is independent of the other direction:

∂1 (dξ2) = ∂2 (dξ1) = 0. (19.141)

Hence, for example,

h2 (u/h2),x = h2 dξ2 (u/h2 dξ2),x = dy (u/dy),x. (19.142)

This property allows for all formulae to be written in terms of the physical displace-
ments dx and dy, and so to eliminate stretching functions h1 and h2. This property
is convenient since the physical displacements are ultimately what are relevant for
the ocean model.
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Döscher, R., and A. Beckmann, 1999: Effects of a bottom boundary layer parame-
terization in a coarse-resolution model of the north atlantic ocean. Journal of At-
mospheric and Oceanic Technology, 17, 698–707.

Dukowicz, J. K., and J. R. Baumgardner, 2002: Efficient discretization of consistent
friction operators on a B-grid in general orthogonal coordinates on a sphere. in
preparation.

Dukowicz, J. K., and R. D. Smith, 1994: Implicit free-surface method for the Bryan-
Cox-Semtner ocean model. Journal of Geophysical Research, 99, 7991–8014.

Dukowicz, J. K., and R. D. Smith, 1997: Stochastic theory of compressible turbulent
fluid transport. Physics of Fluids, 9, 3523–3529.

Dukowicz, J. K., R. D. Smith, and R. C. Malone, 1993: A reformulation and imple-
mentation of the Bryan-Cox-Semtner ocean model on the connection machine.
Journal of Atmospheric and Oceanic Technology, 10, 195–208.

Durran, D. R., 1999: Numerical Methods for Wave Equations in Geophysical Fluid Dy-
namics. Springer Verlag.
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Döscher and Beckmann (1999), 294, 306,

442

acoustic modes, 109
Boussinesq approximation, 35
eliminating in model, 225–226
hydrostatic approximation, 34

adiabatic, 103–104
advection, 31
advection velocity components

introduction, 207, 233
angular momentum, 61–62, 73–81, 333,

336–337, 339, 343–344
anisotropic viscosity, 372–373
arrow notation, 398–399

B-grid computational modes, 364
background viscosity, 371–372
baroclinic instability, 25–27
baroclinic mode, 71
baroclinic pressure, 71–72
baroclinic zone, 267
baroclinic/barotropic split, 229–230
baroclinicity operator, 229
barotropic gravity waves, 226–227
barotropic mode, 71
barotropic mode time filtering, 232
barotropic streamfunction, 235–236
basis vectors

cartesian, 399–400
local isopycnal, 120–122, 400
local surface, 120–122
spherical, 399–400

Beta parameter, 363–364
big leap-frog, 205, 231–232
biharmonic diffusivity, 274–275
biharmonic tracer flux, 274–275
biharmonic tracer operators, 272–281

Gent’s operator, 278–279
horizontal mixing, 274–275
iterative skewsion, 281
neutral filtering, 279–280
neutral mixing, 275–276
Roberts and Marshall, 276–278
skew filtering, 281

biharmonic viscosity, 354–356
boldface notation, 53–54
bolus velocity, 169–170
bottom boundary layer, 114–115, 193
bottom kinematic boundary condition,

48
bottom pressure, 35–36, 65–66
boundary layer, 114–115
boundary layer model, 211
boundary waves, 25–27
Boussinesq approximation

basic elements, 35–36
for ensemble mean fields, 155



INDEX 457

Brownian particle, 189
buoyant mixing, 191–192

cabbeling, 192, 260, 274–275
cabbeling(, 259
canonical momentum, 75–76
Cartesian tensors, 434
chain rule, 401
Christoffel symbols, 420–421, 423, 435
closure problems, 189
co-lo mnemonic, 407, 434
comma notation, 400, 434
commutator, 44, 430, 438
compatibility between mass and tracer,

85–86, 204–205
conservation of indices, 433–434
conservative temperature, 106–108
continuity equations, 45–46
continuum hypothesis, 27–28
contravariant tensor labels, 434
convection, 25–27
coordinate singularity at pole, 397–398
coordinates, 42–44

cartesian and spherical, 43, 398, 402
discussion, 398–400
general orthogonal, 397–398, 410–

411, 426–433
infinitesimal distances, 43–44
key formulae, 43–44
metric tensor, 43–44
partial derivatives, 43–44

Coriolis acceleration, 61–62
Coriolis parameter, 62
Courant-Friedricks-Levy condition, 35,

362
covariance of tensor equations, 418–

419
covariant derivatives, 419–422, 434–435

curl of a vector, 425
divergence of a second order ten-

sor, 424–425
divergence of a vector, 423–424
laplacian of a scalar, 425
laplacian of a vector, 425–426
of one-forms, 421
of second order tensors, 422
of the metric tensor, 422
of vectors, 420–421

covariant tensor labels, 434

deformation rates, 342–343, 347–348,
357, 368

density
expansion coefficients, 109, 248
idealized equation of state, 110
in situ, 108–111
linear equation of state, 110
modified mean, 151
potential, 108–111
quasi-non-Boussinesq, 110–111, 226
reference for Boussinesq, 51

density reference points, 314–315
density weighted averages, 148–149,

154–155
depth dependent diffusivities, 265–266
determinant of metric, 409–410
determinants, 411–413, 423–424
dianeutral physics, 191
dianeutral velocity, 128–131
dianeutral/diapycnal processes, 189–

193
diapycnal velocity, 128–131
diasurface velocity, 128–131
differential geometry, 396
differential manifold, 398
diffusion tensor, 245–246
diffusive closure, 189
diffusivities, 265–266
Dirac delta-function, 302, 352
discretization basics, 39–40, 162
dissipation of kinetic energy, 94–95
Divergence Theorem, 56, 426
double diffusion, 192–193
downgradient tracer diffusive flux, 245–

246
duality, 406
dynamics, 53–64

averaged for a parcel, 156–158
Cauchy’s Stress Principle, 54
fluid columns, 71–73
general principles, 53–56
mapping to model variables, 159–

161
parcels, 56–64
summary of averaged, 158–159
vector invariant, 62–64



458 INDEX

Eady growth rate, 266–267
earth angular velocity, 58–59
earth gravitational acceleration, 60–61
earth mass, 60
earth radius, 60
effective gravity, 59–61
effective transport velocity, 170
Einstein summation convention, 398–

399, 433
energetics

continuum, 84–111
dissipation, 94–95
fluid parcel, 92–97
global ocean, 98–103
internal, 87, 97–98
parcel gravitational potential, 95–

97
parcel kinetic, 94–95
total mechanical for a parcel, 97

ensemble averages
details, 144–145
motivation, 38–39
opposed to space-time averages,

38
enthalpy, 106–108
equation of state, 108–109
Euler’s Theorem, 89
Eulerian and Lagrangian mapping, 31–

32
Eulerian description, 30
exact differential, 88
extensive variable, 87–89
external gravity waves, 226–227
external mode, 71

First Law of thermodynamics, 87–89
flow dependent diffusivities, 265–266,

272
fluxes, 233–234

flux plus restore boundary condi-
tion, 214–215

for surface mixed layers, 213–214
oriented along neutral directions,

248–250
forces

centrifugal, 59–61
Coriolis, 61–62
external/body, 54

internal/contact, 54, 62
fresh water flux

associated with salinity restoring,
214–215

tracer concentration, 212–213
friction

biharmonic friction, 354–356
Cartesian horizontal friction, 343
deformation rates, 347–348
discretization details, 377–387
discretization methods, 375–390
dissipation functional, 350–354
general laplacian friction, 347–349
horizontal friction in continuum,

331–356
Laplacian plus metric formulation,

387–390
Laplacian versus biharmonic, 365–

367
nonconstant viscosity, 343–344
quasi-hydrostatic approximation,

337–338
vertical shears over grid cell, 221–

222
friction in ocean models, 7
functional derivative, 301–302, 306, 350–

352
functional formalism, 301–305, 350–354

gauge freedom, 166, 246
Gauss’s Law, 56, 426
Gaussian curvature, 260
generalized vertical coordinates, 122–

131
transformation matrix, 123–124
transformations, 124–125

Gent-McWilliams eddy velocity discretiza-
tion, 323–325

Gent-McWilliams skew fluxes discretized,
323

Gent-McWilliams stirring, 261–264
geopotential coordinate ocean models,

115–116
geostrophic balance, 94
geostrophic turbulence, 25–27
global tracer conservation, 204–205
GM90 and thickness diffusion, 184–185
gradient operator, 408, 420



INDEX 459

gravitational acceleration, 60–61
gravitational instability, 25–27, 191–192
gravitational potential energy, 95–97
grid Reynolds number, 360
grid wave length, 367
grid wave number, 367, 369

halobaricity, 192, 259–260
Hamiltonian function, 75–76
homogeneous functions, 89
Hooke’s law, 336, 339
horizontal friction in ocean models, 7
horizontal shearing strain, 342–343, 348,

357
horizontal tension, 342–343, 347–348,

357
horizontal tracer diffusion, 257
hydrostatic pressure

approximate, 71–72
baroclinic pressure, 71–72
basic elements, 34
equations for, 64–66
ocean surface grid cell, 224–225
surface layer pressure, 71–72

inertial reference frames, 59
inexact differential, 88
information loss, 189
integral theorems, 426
integrating factor, 88
intensive variable, 88–89
internal energy, 87, 97–98
internal mode, 71
internal waves, 191–192, 195
interpreting model equations, 144–145
isentropic motion, 103–104, 109–110
isopycnal models, 110, 118, 248

Jacobian of transformation, 401, 409–
410

Kelvin waves, 25–27
kinematics, 28–33, 45–53

averaged for a finite domain, 149–
153

averaged for a parcel, 148–149
basics of averaged, 145
continuity relations, 32–33, 45–46

Eulerian and Lagrangian mapping,
31–32

Eulerian description, 30
fixed space coordinates, 29–30
Lagrangian description, 30
material coordinates, 29–30

Kolmogorov scale, 192
Kronecker symbol, 399, 401, 434

Lagrangian description, 30
Lamb wave, 34, 111, 225
lapse rate, 90–92
lateral directions, 190
lateral physics, 189–191
Levi-Civita symbol, 32, 337, 411–413
linear momentum density, 51
local tracer conservation, 204–205

mass balance
column, 50–51
diagnosing the density time ten-

dency, 207
domains, 49–53
generalized coordinates, 132
mass and tracer compatibility, 204–

205
model grid cell, 205–207
ocean, 51
ocean column, 207–209
parcels, 32–33, 33, 45–46

material tracers, 84–86
mechanical mixing, 191–192
mesoscale eddies, 164–166
metric tensor, 43–44, 401–402, 433–434,

436–437
determinant, 409–410, 437
for general surface, 127–128
for surface in Euclidean space, 413–

414
for surface of sphere, 403
induced, 413–414
mapping vectors to one-forms, 406
using generalized coordinates, 128
vanishing covariant derivative, 422

metric terms
advection, 58
friction, 376–377, 387–390
general discussion, 81–82



460 INDEX

metricity, 422
mixed layer, 193
momentum balance

fluxes through ocean surface, 222–
225

for a grid cell, 219–225
general form of time stepping, 234–

235
split-explicit time stepping, 225–

233
time stepping summarized, 233

Monge gauge, 122
Munk boundary layer, 363–364, 370

natural boundary conditions, 301–302,
351–352

neutral diffusion fluxes discretized, 320–
323

neutral diffusivities, 265–266
neutral directions, 110, 190

specification, 247–248
neutral frame, 252
neutral physics, 190–191

active tracer balance, 257–258
diffusion in neutral frame, 254, 255
diffusion in z-level frame, 254
discretization details, 300–326
effective diffusivity, 264
errors with horizontal diffusion, 257
functional formalism, 301–305
Gent-McWilliams potential energy

sink, 262
Gent-McWilliams stirring, 261–264
neutral diffusion plus Gent-McWilliams,

263–264
relevance for all resolutions, 241–

243
small angle approximation, 255–

257
neutral physics and boundaries, 288–

296
neutral surface topology, 248
neutral tracers, 212
Newton gravitational constant, 60
Newton’s Second Law, 56
Newton’s Third Law, 54–55
no-slip boundary conditions, 351–352
non-hydrostatic modeling, 34

non-inertial reference frames, 59
nonlinear viscosity, 368
numerical dianeutral mixing, 197–198

ocean processes, 25–27
one-forms, 404–405

covariant derivatives, 421
outward normal, 54, 415–416

orthogonal coordinates, 426–433
differential operators, 426–433
summary of formulae, 436–438

outer product, 419

parameterization of eddies, 164–166
partial cells, 116, 210, 220
path dependent changes, 88
physical processes, 25–27
physical tensor components, 43–44, 428–

429, 437–438
piston velocity, 214–215
planetary boundary layer, 114–115
planetary geostrophic equations, 69–

71
potential enthalpy, 106–108
potential temperature, 105–108, 110
potential vorticity, 66–71, 87
potential vorticity diffusion, 189
potential vorticity mixing, 265–266
Prandtl number, 370
pressure gradient averaging, 234
pressure gradient errors, 117–118
pressure-work, 88
primitive equations

averaged, 143–162
model equations summarized, 218–

219
summary of unaveraged, 146–148
unaveraged, 42–82

projected coordinates, 122–123

quasi-hydrostatic approximation, 337–
338

quasi-non-Boussinesq approximation,
110–111, 225–226

quasi-Stokes transport, 172–174

Redi diffusion tensor, 255
reference points, 314–315
regularizing diffusivities, 269–270



INDEX 461

representations, 404
resolved processes, 188–191
response functions, 91
Rhines scale, 267
Richardson number, 268
rigid lid approximation

basic elements, 36–37
details and critique, 235–236

Robert time filter, 231–232, 234, 361
Rossby radius of deformation, 267–268
Rossby waves, 25–27
rotational flux, 166–167, 246–247

salt in surface grid cell, 212–213
sea surface height, 35–36

modified mean, 150–151
steric effects, 35–36
tendency for Boussinesq, 48
tendency for modified mean, 152–

153
tendency for non-Boussinesq, 52

self-adjoint operators, 301, 350
semi-colon notation, 420–421, 434–435
sigma-coordinate ocean models, 116–

118
skew-diffusive flux, 245–246
skewsion, 166–168, 246–247
slope clipping, 285–286
slope tapering, 286–287

recommendations, 288–296
slope vector, 120
Smagorinsky viscosity, 367–372

background, 371–372
biharmonic, 371
discretization, 386–387
general ideas, 367–368
scaling parameter, 368–370

small angle diffusion tensor, 255
solid body motion, 75, 344
sound speed, 109
space tensor components, 414
spurious cabbeling, 198
spurious dianeutral mixing, 197–198
stability

advection and diffusion balance,
360–361

biharmonic mixing, 363
Gent-McWilliams stirring, 287–288

Laplacian diffusion, 361–362
recommended slope tapering, 288–

296
rotated mixing, 284–287
slope clipping, 285–286
slope tapering, 286–287

state function, 88
stencils for discrete neutral fluxes, 323
steric effects, 52
strain tensor, 334–335
stress tensor, 55–56, 62

friction stresses, 333–337
kinetic energy dissipation, 340
symmetry and angular momentum,

336–337, 339
trace-free, 338, 358
trace-free constraint, 340–341
transverse anisotropy, 344–347
transverse isotropy, 341–344

stretching functions, 410–411, 436
summary of tensor analysis, 433–438
summation convention, 398–399, 433
surface boundary layer model, 222–223
surface kinematic boundary condition

Boussinesq, 49
for modified mean height, 152
non-Boussinesq, 52–53

surface mass flux, 50
modified mean, 152

surface pressure, 71–72
surface tensor components, 414
surface volume flux, 48

modified mean, 152
surfaces in Euclidean space, 413–416

area element, 414
induced metric, 413–414
normals and tangents, 415–416
tensor components, 414–415

surfaces in the ocean, 119–120
symmetry and conservation laws, 79–

82

tensor analysis motivated, 7–8
tensor density, 412
tensor transformations

arbitrary rank, 407–408
gradient operator, 408
one-form, 406–407



462 INDEX

scalar, 403–404
vector, 399, 403–404

tensors, 398–399
textbooks, 5
thermal wind equations, 70–71
thermal wind Richardson number, 268
thermo-hydrodynamics, 84–111
thermobaricity, 192, 259–260
thermodynamic tracers, 86–87, 105–108
thickness as Jacobian, 124
thickness diffusion, 184–185
thickness equation, 133
thickness of a layer, 119–120
thickness weighted fluxes, 210
torsionless manifold, 422, 435
trace of a tensor, 343
tracer and mass compatibility, 244
tracer balance

budget in surface grid cell, 211–
212

flux through ocean surface, 211
model grid cell, 209–213
salt in surface grid cell, 212–213

tracer SGS transport flux, 244
tracer transport tensor, 244–246
tracer variance dissipation, 245
tracers

as scalar fields, 85
averaged tracer in a parcel, 153–

156
general form of time stepping, 234
tendency for, 85–86
three general types, 84–87
tracer and mass compatibility, 204–

205
types of tracers(, 84

traditional approximation
basic elements, 35
geometric restrictions, 42–45
point particle, 73–79
thin shell approximation, 42

transformation matrix, 253–254, 399,
401, 435–436

transport term, 31
transverse anisotropy, 344–347
transverse isotropy, 341–344
triad stencil structure

density and tracer, 314–315

velocity, 350, 380, 385–386
turbulence closure, 189

unit directions, 399–400, 410–411, 427–
428

unit tensor, 399
unresolved physics, 188–191

vector invariant, 62–64
vector notation, 53–54
vector streamfunction, 166
vectors

covariant derivative, 420–421
discussion, 398–400
introduction, 398–399
transformations, 399

Veronis effect, 370–371
vertical coordinate choice, 114–118

generalized, 122–131
isopycnal-coordinates, 118
sigma-coordinates, 116–118
z-coordinates, 115–116

vertical gauge, 167
vertical physics, 189–191
virtual mass fluxes, 36, 96
virtual salt fluxes, 235
viscosity on a sphere, 364–365
viscosity tensor, 336
volume balance

column, 48
domains, 46–49
generalized coordinates, 133
ocean, 48–49
parcels, 33, 45–46

volume element, 409–411
cartesian coordinates, 410
general orthogonal coordinates, 410–

411
isopycnal coordinates, 411
spherical coordinates, 410

volume rearrangement, 169–170
von Karman constant, 368
von Neumann stability, 361–362
vorticity, 62–71

wedge symbol for vector cross prod-
uct, 400

z-coordinate ocean models, 115–116


	Ocean climate models
	Ocean models as tools for ocean science
	Ocean climate models
	Climate change

	I FUNDAMENTAL OCEAN EQUATIONS
	Basics of ocean hydrodynamics
	Some fundamental ocean processes
	The continuum hypothesis
	Kinematics of fluid motion
	Kinematical and dynamical approximations
	Averaging over scales and realizations
	Numerical discretization

	Ocean hydrodynamics
	Orthogonal coordinates
	Geometry of the Traditional Approximation
	Volume and mass conserving kinematics
	Principles of continuum dynamics
	Dynamics of fluid parcels
	Hydrostatic pressure
	Vorticity and potential vorticity
	Dynamics of fluid columns
	Particle dynamics
	Symmetry and conservation laws

	Ocean thermo-hydrodynamics
	Introduction
	General types of ocean tracers
	Basic equilibrium thermodynamics
	Energy of a fluid parcel
	Global energy balances
	Basic non-equilibrium thermodynamics
	Thermodynamical tracers
	Ocean density



